改进的 Brownian 桥式经验公式
设置参数 c 的目的是把小波包分解系数中的扰动分量与噪声分量分离。 c 的合理设置是选取阈值λ 的关键。对于噪声信号,如果令 c≥dmax,则可以实现信号与噪声分量的理想分离。因此,可以把噪声信号的 dmax看作是理想的参数值 c。在此基础上,对上述算法进行分析和改进 。
改进的概率公式
由表 1 可以看出,参数 c 虽然与噪声的方差无关,但是与采样点数 N 有关。有文献中利用概率的观点求出 c N a = −1/ 2 ln / 2 。这样设定 c 值在小波除噪算法中得到较为满意的检测结果。但是由于小波包分解系数与小波分解系数的分布不同,这样的 c 值不适用于小波包除噪。对具有相同分布特性,而采样点数不同的噪声信号进行分析,得到采样点数与 dmax 的关系曲线。其中, d1max=dmax×N。可以看出, d1max曲线的幅值保持在[160, 210]之间,而且不随采样点数的变化而变。因此,可以判断,dmax与采样点数成反比。因为可以把噪声信号的 dmax看作是理想的参数值 c,因此可以设c=dmax=k/N。