在循环加载下,产生疲劳破坏所需应力或应变的循环次数。对零件、构件出现工程裂纹以前的疲劳寿命称为裂纹形成寿命。工程裂纹指宏观可见的或可检的裂纹,其长度无统一规定,一般在0.2~1.0毫米范围内。自工程裂纹扩展至完全断裂的疲劳寿命称为裂纹扩展寿命。总寿命为两者之和。因工程裂纹长度远大于金属晶粒尺寸,故可将裂纹作为物体边界,并将其周围材料视作均匀连续介质,应用断裂力学方法研究裂纹扩展规律。由于S-N曲线是根据疲劳试验直到试样断裂得出的,所以对应于S-N曲线上某一应力水平的疲劳寿命N是总寿命。在疲劳的整个过程中,塑性应变与弹性应变同时存在。当循环加载的应力水平较低时,弹性应变起主导作用;当应力水平逐渐提高,塑性应变达到一定数值时,塑性应变成为疲劳破坏的主导因素。为便于分析研究,常按破坏循环次数的高低将疲劳分为两类:①高循环疲劳(高周疲劳)。作用于零件、构件的应力水平较低,破坏循环次数一般高于104~105的疲劳,弹簧、传动轴等的疲劳属此类。其特点是:作用于构件上的应力水平较低,应力和应变呈线性关系。②低循环疲劳(低周疲劳)。作用于零件、构件的应力水平较高,破坏循环次数一般低于104~105的疲劳,如压力容器、燃气轮机零件等的疲劳。其特点是:作用于构件的应力水平较高,材料处于塑性状态。很多实际构件在变幅循环应力作用下的疲劳既不是纯高循环疲劳也不是纯低循环疲劳,而是二者的综合。
相应地,裂纹扩展也分为高循环和低循环两类。高循环疲劳裂纹扩展规律可利用线弹性断裂力学方法研究;低循环疲劳裂纹扩展规律一般应采用弹塑性断裂力学方法研究,不过由于问题十分复杂,尚未很好地解决。
实践表明,疲劳寿命分散性较大,因此必须进行统计分析,考虑存活率(即可靠度)的问题。具有存活率p(如95%、99%、99.9%)的疲劳寿命Np的含义是:母体(总体)中有p的个体的疲劳寿命大于Np。而破坏概率等于(1-p)。常规疲劳试验得到的S-N曲线是p=50%的曲线。对应于各存活率的p的S-N曲线称为p-S-N曲线。