(1)几何相似
几何相似是指模型与其原型形状相同,但尺寸可以不同,而一切对应的线性尺寸成比例,这里的线性尺寸可以是直径、长度及粗糙度等。如用下标p和m 分别代表原型和模型,则
线性比例常数可表示为 Cl=lp/lm
面积比例常数可表示为 Ca=Ap/Am=Cl^2
体积比例常数可表示为 Cv=Vp/Vm=Cl^3
(2)运动相似
运动相似是指对不同的流动现象,在流场中的所有对应点处对应的速度和加速度的方向一致,且比值相等,也就是说,两个运动相似的流动,其流线和流谱是几何相似的。
速度比例常数可表示为 Cv=Vp/Vm;
由于时间的量纲是l/V,因此时间比例常数为 Ct=tp/tm=(lp/Vp)/ (lm/Vm)=Cl/Cv
由此加速度比例常数Ca=ap/am=Cv/Ct=CI/Ct^2
(3)动力相似动力相似即对不同的流动现象,作用在流体上相应位置处的各种力,如重力、压力、粘性力和弹性力等,它们的方向对应相同,且大小的比值相等,也就是说,两个动力相似的流动,作用在流体上相应位置处各力组成的力多边形是几何相似的。
一般地说,作用在流体微元上的力有重力Fg、压力Pp、粘性力Fv、弹性力Fe和表面张力Ft。如果流体是作加(减)速运动,则加上惯性力Fi后,上述各力就会组成一个力多边形,因此Fg Fp Fv Fe Ft Fi=0。
当然,在许多实际问题中,上述各力并非同等重要,有时有些力可能不存在或者小得可以忽略不计,例如Fe和Ft,见图。如果在满足几何相似及运动相似的两个流动现象中,作用在任何流体微元上的力有Fg、Fp、Fv和Fi等,于是,如果这些力满足以下条件,则说两个现象是动力相似的。
动力比例常数可表示为:Cf=Fgp/Fgm= Fpp/Fpm= Fvp/Fvm= Fip/Fim=…
满足以上相似条件时,两个流动现象(或流场)在力学上就是相似的。这三种相似条件中,几何相似是运动相似和动力相似的前提和依据,动力相似是则是流动相似的主导因素,而运动相似只是几何相似和动力相似的表征;三者密切相关,缺一不可。