造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

离散傅里叶变换物理意义

2022/07/16252 作者:佚名
导读:(1)物理意义 设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示 X(e^jω)= ∑n={0,N-1}x(n) e^j-ωn X(z)= ∑n={0,N-1}x(n)z^-n X(k)= ∑n={0,N-1}x(n) e^-j2πkn/N 单位圆上的Z变换就是序列的傅里叶变换 离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采

(1)物理意义

设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示

X(e^jω)= ∑n={0,N-1}x(n) e^j-ωn

X(z)= ∑n={0,N-1}x(n)z^-n

X(k)= ∑n={0,N-1}x(n) e^-j2πkn/N

单位圆上的Z变换就是序列的傅里叶变换

离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采样,也就是对序列频谱的离散化,这就是DFT的物理意义.

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读