在Oxyz直角坐标系中,设原匀直流的流向为正x方向,流速为
式中
求出这些扰动速度分量,流动问题就解决了。在定常和可忽略粘性的可压缩流动中,利用小扰动假设,忽略气体动力学基本方程组(见流体力学基本方程组)中的二阶和二阶以上的小量,可得出如下的小扰动方程:
式中
此时
这就是亚声速流动或超声速流动的小扰动方程,称为普朗特-格劳厄脱方程。该方程是线性的,可以应用解的叠加原理求解。对于具体的流动问题,如再将物面边界条件也作线性化处理,就比求解原来的非线性基本方程容易,应用也广泛。
此时接近于1,小扰动方程中右边的第一项和左边第一项可能成为同一数量级,因而不能忽略,此时小扰动方程简化为:
它比原气体动力学基本方程简单,但仍是非线性的,求解还有不少困难。目前已有一些求解的方法,这些方法以及基于小扰动假设之上的跨声速相似律是跨声速小扰动理论的主要内容(见跨声速流动)。
在小扰动假设下,从气体动力学基本方程出发,利用激波关系式和物面边界条件,可对激波层内的扰动速度、压力和密度等物理量进行量级估计。考虑具有常比热比的完全气体,若设δ为流动问题中的小量(如物体细长比),又设
由此对气体动力学基本方程组、激波和物面的边界条件进行无量纲化,略去二阶和二阶以上小量,可得到与前述不同的简化的高超声速小扰动方程和相应的边界条件。这些方程仍为非线性方程,但显示出流动在一定条件下可有相似性的重要结果:若两个相似的物体(无量纲物形方程相同)的参数K(K=Ma/δ)、气体的比热比γ和α/δ(气流攻角α同细长比的比值)都对应相等,则这两物体的绕流流动是等效的,或称为彼此相似,即在相同的无量纲空间位置上,流动的无量纲物理量(如压力、密度、速度等)对应相等。这一等效性规律称为相似律。K、γ、α/δ称为尖薄体高超声速相似参数。物体的压力系数、举力系数和阻力系数也将只与这些相似参数有关。相似律在理论和实验研究上都有重要意义。上述高超声速相似律是由中国学者钱学森和郭永怀于1946年研究二维和轴对称无旋运动方程时提出的,后来又有许多发展。
小扰动量级分析表明,尖薄物体作高超声速运动时对气流的扰动,在运动方向上的扰动速度比