粘弹性力学
viscoelasticitytheoryof
线性粘弹性材料的本构关系含微分型和积分型两大类。可用服从胡克定律的弹性元件和服从牛顿粘性定律的粘性元件的不同组合表征线性粘弹性材料的特性。弹性元件与粘性元件两者串联而成麦克斯韦模型;两元件并联而成开尔文模型。多个麦克斯韦单元并联或多个开尔文单元串联则组成一般线粘弹性模型。
粘弹性力学中的几何方程和运动方程与弹性力学相同。从原理上说,利用本构方程、运动方程、几何方程、边界条件以及初始条件,可找到粘弹性边值问题的解。
求解方法与弹性力学相仿,有位移法、应力法、半逆法等。对于准静态的线粘弹性问题,若边界面不随时间而变化,全部方程经对时间作拉普拉斯变换后,得到一个在像空间中相应的线弹性问题;将所得相应弹性问题的解进行逆变换,即为原粘弹性问题解。这便是用弹性-粘弹性对应原理求解。对于不能用对应原理的线粘弹性问题,根据具体问题寻求其解法,包括采用近似解法。
非线性粘弹性材料的力学行为比较复杂,本构理论种类繁多。常用的非线性粘弹性本构关系有重积分型、单积分型和幂律关系。其中单积分型本构关系形式简单,利于试验研究和表征材料函数,便于用来求解边值问题,因而得到广泛发展与应用。非线性粘弹性问题不易求解,本构关系的多样性导致不同的解法,除极少数简单问题外,一般只能作近似解或数值解。2100433B