线性系统理论的发展经历了“经典线性系统理论”与“现代线性系统理论”两个阶段。
经典理论形成于20世纪三四十年代。奈奎斯特于1932年提出了关于反馈放大器稳定性的理论;波特于20世纪40年代初期引入了波特图;伊万思于1948年提出了根轨迹理论。这些标志着经典线性控制理论的形成。经典理论的应用在第二次世界大战中取得了巨大成功,主要研究单输入单输出线性时不变系统。
20世纪50年代以后,随着航天等技术的发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,这种状况推动线性系统的研究,在1960年以后从经典阶段发展到现代阶段。美国学者R.E.卡尔曼首先把状态空间法应用于对多变量线性系统的研究,提出了能控性和能观测性这两个基本概念,并提出相应的判别准则。1963年他又和E.G.吉尔伯特一起得出揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展作了开创性的工作。1965年以后,现代线性系统理论又有新发展,出现了线性系统几何理论、线性系统代数理论和多变量频域方法等研究多变量系统的新理论和新方法。随着计算机技术的发展,以线性系统为对象的计算方法和计算机辅助设计问题也受到普遍重视。