当线性规划原问题是退化问题时,由线性规划问题的几何解释可知,通过该可行域某个极点的超平面超过n个,所以该点为一个退化的极点。根据摄动法原理,可在退化问题约束方程的右边项做微小的扰动,使得超平面有一个微小的位移,原来相交于一点的若干个超平面略微错开一些,退化极点变成不退化极点。决策者可根据问题的实际情况,适当增加或减少某些资源的数量,使得其迭代变为非退化的,以得到问题的最优解。
在线性规划原问题是退化问题时,不能简单地认为某一求解过程中的影子价格为0,所对应的资源一定是富余资源。由上述问题得到的最优解,对约束方程进行计算,得到约束方程的三个方程全部取等式,即三种资源在最优解的情况下,松驰变量均为零。由资源的灵敏度分析可知,在此约束条件下,资源正恰好按最优方式全部用完,目标函数总收益达到最大。所以当线性规划原问题为退化问题时,资源的影子价格不数的数称为“下溢”。