通常,它用来证明一些命题P(x),x是一些递归定义的结构(例如树和表)中的一种。一个良基偏序是定义在这种结构上的。结构归纳法的证明是由证明命题对于所有的极小结构成立,以及如果他在一个结构S的基础结构中成立,那么它一定也在整个S中成立这些组成。比如,如果一个结构是个这样一个表,含有偏序 '<',只要表 L 在表M的尾部,那么L < M。在这样的排序中,空的list[ ]是唯一的最小元素。结构归纳法中,一些命题P(l) 的证明由两个部分组成:
证明P([])成立 如果P(L) 在表L中成立, 如果L 是表 M的底部, 那么P(M) 也成立。