主要由以下几个部分组成 :换向阀及控制机构、 蓄热室及蓄热体、高温气体通道和喷口和空煤气供给系统和排烟系统。
换向阀及控制机构
在蓄热式高温燃烧系统中,烟气和空气的切换装置是必须的,因而换向阀是该系统中的关键设备(见图片)。
换向阀是通过阀体的运动使空气(或煤气)与烟气在阀内定时换向。一般地说,换向阀有四个进出口,其中有两个口分别通向一对交替使用的蓄热室,另外两个口分别连接排烟烟囱和供空气(或煤气)管道。在前一个换向周期内,换向阀使通向其中一个蓄热室的进口与另外一个连接到排烟烟囱的出口相连,使废气排出;在后一个换向周期内,换向阀使连接供空气(或煤气)管道的进口与另外一个连接到一个蓄热室的出口相连,使空气(或煤气)进入蓄热室去完成预热。 阀内采取特殊的密封结构来保证密封性能和灵活的换向动作。
换向阀的换向时间与炉内烟气温度及蓄热体的透热厚度有关,对于透热厚度一定的蓄热体,换向时间越长,离开蓄热室的烟气温度越高,空气(或煤气)的预热温度也会越低,热回收率也越低;若换向时间过短,则会降低换向阀的寿命,因此应通过实验来确定最佳的换向时间是至关重要的。对于小球体的蓄热室,其换向周期一般取2.0--3.0分钟;蜂窝体的蓄热室,其换向周期为30--45秒钟或更短。
若采用直通阀,系统中有一对蓄热式高温燃烧装置就需要4套切换阀,而采用换向阀,系统中一对蓄热式高温燃烧装置就只需要一套切换阀,成本就能够大大降低。
当换向阀的切换时间为30秒,其每年的动作次数为100万次;即使是换向阀的切换时间为3分钟,而每年的动作次数也达到17万次;因换向阀换向频繁,因而换向阀机械方面的可靠性、耐久性和密封性就相当重要。对于蓄热式高温燃烧系统来说,选择一个稳定可靠的换向阀是系统成败的关键。
换向控制一般以定时换向为主,但当废气超温时系统必须同时具有能够强制换向的功能。
系统换向时应先切断空(煤)气,然后换向阀换向,待换向阀换向动作结束后,再打开空(煤)气,此时一个换向过程才算结束。整个换向动作过程应该能够在TFT上监视。当某一动作发生异常时,系统应该能够自动报警并提示故障点及处理方法。对于蓄热式高温燃烧系统来说,换向控制和系统保护的可靠性也是相当重要的。
换向阀应集中配置,即每个供热区段只配一个空气换向阀和一个煤气换向阀,这样可以简化管路系统和减少换向装置的数量,燃烧自动控制系统也得以简化。
换向阀的换向时间采用时间和温度主从控制,即以定时控制为主,但同时当出蓄热室的烟气温度超过设定置时,控制系统会自动报警并根据温度信号控制换向阀强制进行换向。控制系统中设有换向自动保护装置。换向阀的形式多种多样,一般均为各供货厂家自行开发的专利产品。我们在吸收各家之长的基础上,成功的开发研制出独具特色的换向阀。
蓄热室及蓄热体
在国际上所使用的蓄热体主要有小球体、蜂窝体和片状体 。我国普遍使用的是小球体和蜂窝体。(见图片)
蓄热室是放置蓄热体的设备,也是热交换的区域。它可以放置在炉墙内,称为内置式;也可以在炉墙外单独设置,称之为外置式。内置式以加厚的炉墙为四壁,外置式的外壳是由型钢及钢板焊接而成或由混凝土浇筑而成,四壁砌筑耐火材料。蓄热室中间堆放蓄热体,要求蓄热室密封性能要好,焊接处要求气密性焊接,耐火材料砌筑泥浆要饱满,绝不允许有串火或气体泄露。我国通常采用的是陶瓷小球体式蓄热体,其理由是尽管在压力损失方面与蜂窝体式蓄热体相比有些不利,但考虑到单位体积的蓄热量、蓄热体的耐用强度、堵塞时的清扫、以及便于更换已破碎和损坏的蓄热体等方面陶瓷小球体式蓄热体具有一定的优越性,选择陶瓷小球体式蓄热体还是有利的。
高温气体通道和喷口
高温气体通道可以同炉墙有机地配合砌筑在一起,也可以在炉墙外单独设置。喷口设置在炉墙内,喷口既是传统意义上的烧嘴,同时也是加热炉的排烟口。
空煤气的高温气体通道之间砌体要求砌筑严密,不能够串气,以避免发生爆炸。因此,对炉墙砌体材料的要求相对其它加热炉要高。
空、煤气供给系统和排烟系统
蓄热式燃烧技术的空、煤气供给系统与传统加热炉的空、煤气供热系统一样,也需进行分段供给控制。从空、煤气总管分出的各段支管连接各自的换向阀,换向阀后分两路连接到炉子两侧的一对蓄热室。在换向阀前的空、煤气支管上设有流量检测和调节装置,并设有安全保护装置。空煤气供给压力应考虑到换向阀和蓄热室在内的整个系统的阻力损失。
烟气从蓄热室出来,温度已降至200℃以下,借助排烟机抽力,流经换向阀、排烟管送至烟囱排入大气,在排烟管上设有烟温检测和炉膛压力控制装置。由于烟气温度在200℃以下,因而普通的标准排烟机就能够满足使用要求。排烟机的能力根据排烟量和烟气管路的系统阻力确定,所以正确确定烟气流经蓄热室和换向阀时的阻力损失也是十分重要的。