金属塑性变形的实质可用晶粒内部、晶粒间产生滑移和晶粒发生转动来解释。在常温和低温下,单晶体的塑性变形主要是通过滑移、孪生等方式进行的。
1、滑移
单晶体的滑移变形是晶体在切应力作用下晶体的一部分相对于另一部分沿着一定晶面(称滑移面)和晶向(称滑移方向)发生相对滑动的结果,具体如图《单晶体滑移变形示意图》所示。
上面所描述的滑移运动,相当于滑移面上、下两部分晶体彼此以刚性整体作相对运动。实现这种滑移所需的外力要比实际测得的数据大几千倍,这说明实际晶体结构及其塑性变形并不完全如此。
2、孪生
空生是在切应力的作用下,晶体的一部分相对于另一部分沿一定的晶面(空生面)和晶向(李生方向)产生一定角度的均匀切变过程。李生变形使晶体内已变形部分与未变形部分以孪生面为分界面形成了镜面对称的位向关系。与滑移相比,产生孪生所需的切应力很高,因此,只有在滑移很难进行的条件下,晶体才发生李生变形。李生变形本身对晶体塑性变形的直接影响并不大,但它可使其中某些原来处于不利滑移的位向转变为有利于发生滑移的位向,从而激发滑移变形的进一步进行,从而使金属的变形能力得到提高。
机械制造中使用的金属材料大多数是多晶体。多晶体是由许多小的单晶体一一晶粒构成的,其变形抗力远远高于单晶体。多晶体塑性变形的基本方式仍是滑移,但是由于多晶体中各个晶粒的空间取向互不相同以及晶界的存在,使多晶体的塑性变形过程比单晶体更为复杂 。2100433B