1、经典统计学参数
岩体节理表面是粗糙不平的, 描述节理表面形态是一个纯几何问题。 经典统计学对节理表面形态的描述通常包括节理凸台高度、形状、倾角以及分布等参数。
经典统计学的描述参数可分为3类:
(1) 振幅参数:主要反映节理凸台高度的变化, 如中线均值C、凸台高度的均方值M和均方根R, 以及绝对粗糙度k;
(2) 斜率参数:主要反映节理凸台的形状, 如凸台高度一阶导数即斜率Z2 、二阶导数即曲率Z3、凸台斜率为正的基线长度与凸台斜率为负的基线长度之差与整个基线长度的比值Z4 、粗糙度指数Rp和平均微角i等;
(3) 混合参数:既涉及振幅变化又涉及凸台斜率变化, 如结构函数S、自相关函数AC和谱密度函数。
上述参数大多是从机械制造行业的摩擦学中引进的, 如此多的参数似乎足以描述岩体节理的表面形态了, 但实际情况并非如此,甚至引进了14个参数来描述节理形态, 几乎涉及了节理几何形态的方方面面, 但结果并未得到大家的公认。
2、节理粗糙度系数
经典统计学对该问题研究日益深人的同时,从工程角度出发提出了描述节理粗糙度的综合参数, 其中最具影响的是节理粗糙度系数J, 该参数直到今天仍被广泛应用于工程实际。
其测试方法之一是将实际节理剖线与标准曲线进行比较, 然后取值; 另一种方法是对节理进行压剪实验, 将实验结果参照峰剪强度的经验关系式进行反分析获得。一个有趣的工作是建立上述参数间的相互关系。
3、地质统计学参数
在统计学对节理表面形态定量描述的研究进展中, 另一值得注意的研究成果是地质统计学的方法。 地质统计学的基本函数是所谓的经验方差函数或半经验方差函数, 定义为振幅变化的均方值。研究表明, 节理表面形态可根据地质统计学的有关参数如基台值、变程等进行描述。通过在方差函数中引进方位角后, 即可用极坐标来描述节理表面的各向异性。