随着难加工材料精度要求的提高,特别是航空 航天零件,一维超声加工已经明显不能满足生产的需要,二维超声振动加工应运而生了。超声波椭圆振动切削已受到国际学术界和企业界的重视,美国、英国、德国和新加波等国的大学以及国内的北京航空航天大学和上海交通大学已开始这方面的研究工作。日本企业界(如日立、多贺和 Towa 公司等)已开始这方面的实用化研究。 Chandra Nath 等人研究硬质合金刀尖圆弧半径在超声椭圆振动切削下的影响中,阐述了刀具的几何形状,特别是刀具的圆弧半径对一维超声振动切削性能的影响。利用实验表明了刀具圆弧半径在 0.6mm 或更低(例如0.2mm 或 0.4mm)和更高的圆弧半径(例如 0.8mm)下,超声椭圆振动切削在各个方面明显表现更好。N.Suzuki 等人利用超声椭圆振动切削钨合金模具的光学玻璃零件中表明,由于传统振动切削不能获得更准确的精度,主要是因为刀具的快速磨损,脆性材料的破裂及黏糊在刀具上。而超声椭圆切削能获得更实用的超精密模具,成功应用于玻璃的成型。我国设计出高频超声椭圆振动精密切削,其相对一般的椭圆振动和普通低频超声振动具有减低切削力、提高加工精度的效果,并且可采用更高切削速度,从而可以提高工作效率。但是,超声波椭圆振动切削在理论和应用方面还有许多工作要做。尤其是对硬脆性材料的超精密切削加工、微细部位和微细模具的超精密切削加工等方面还需要进一步深入研究 。
长春汽车工业高等专科学校采用超声振动切削方法对一汽变速箱厂生产的一直齿齿轮的滚齿加工进行了工艺实验,通过生产现场各种工艺参数实验及小批量试生产,收到了令人满意的效果,具有较好的发展前景。
北京装甲兵技术学院提出了一种超声微振车削的新工艺。其特点是功率小(50 W)、振幅小(2~5μm),同样可获得一般振动车削的效果。
超声振动切削的应用也日趋广泛,对其的研究主要应从几个方面进行:
(1)研制和采用新的刀具材料;
(2)研制和采用高效的振动切削系统;
(3)对振动切削机理深入研究;
(4)超声椭圆振动切削的研究与推广;
(5)超声铣削加工技术。
微细超声加工在原理上与常规的超声加工相似,是通过减小工具直径、磨料粒度和超声振幅来实现。以微机械为代表的微细制造是现代制造技术中的一个重要组成部分,晶体硅、光学玻璃、工程陶瓷等脆硬材料在微机械中的广泛应用,使脆硬材料的高精度三维微细加工技术成为世界各国制造业的一个重要研究课题。超声加工与电火花加工、电解加工、激光加工等技术相比,既不依赖于材料的导电性又没有热物理作用,与光刻加工相比又可加工高深宽比三维形状,这决定了超声加工技术在陶瓷、半导体硅等非金属硬脆材料加工方面有着得天独厚的优势。
当前,制造业现代化水平不断提高,机床向数控方向不断发展,而我国制造行业和企业的生产加工装备绝大多数仍是传统的机床,比如车床、铣床、磨床、钻床、镗床等,其刀具相对工件作直线运动,使得其加工精度远远不能满足需求,直接影响企业的生存和发展。将超声加工技术应用到数控机床上,使得刀具相对工件作不规则运动,使工件精度得以进一步提高 。