造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

跟踪误差仿真研究中的跟踪误差

2022/07/1699 作者:佚名
导读:仿真过程中,固定平台Y轴,X和z轴运动,期望Z轴在X,Z平面上运动轨迹为 ,刚度为100 N/m, ,首先进行基于位置的阻抗控制仿真,而后进行基于力矩的阻抗控制仿真,仿真结果分别如右图图一和图二所示。(a)为位置跟踪误差曲线,实线代表期望轨迹,虚线代表实际运动轨迹;(b)为力跟踪误差曲线。 仿真研究中的跟踪误差 从仿真结果我们可以看出,模糊CMAC作用力跟踪阻抗控制器能补偿平台动力学上的不确定性,

仿真过程中,固定平台Y轴,X和z轴运动,期望Z轴在X,Z平面上运动轨迹为

,刚度为100 N/m,

,首先进行基于位置的阻抗控制仿真,而后进行基于力矩的阻抗控制仿真,仿真结果分别如右图图一和图二所示。(a)为位置跟踪误差曲线,实线代表期望轨迹,虚线代表实际运动轨迹;(b)为力跟踪误差曲线。
  • 图一
  • 图二
  • 图三
  • 图四
仿真研究中的跟踪误差

从仿真结果我们可以看出,模糊CMAC作用力跟踪阻抗控制器能补偿平台动力学上的不确定性,基于位置阻抗控制的性能稍微优于基于力矩阻抗控制。为了进行仿真比较,我们用CMAC代替FCMAC进行仿真,固定y轴,X和z轴运动,期望z轴在x和Z平面上运动轨迹为

,刚度为100 N/mm,先进行基于位置的阻抗控制,然后进行基于力矩的阻抗控制,仿真结果如右图图三,图四所示。(a)为位置跟踪误差曲线,实线代表期望轨迹,虚线代表实际运动轨迹;(b)为力跟踪误差曲线。

从仿真结果我们可以看出,FCMAC性能优于CMAC,基于位置阻抗控制的性能稍微优于基于力矩阻抗控制。另外,由于基于位置的阻抗控制方案无需改变内部的控制结构便可使位置控制平台系统实现鲁棒性作用力控制。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读