图3所示为进气道/发动机/飞机一体化设计时应考虑与处理的问题。对于未来的战斗机还需考虑减少雷达散射面积的要求,需注意采取必要的措施防止来流温度的不均匀,即防止反推力装置或V/STOL(vertical and/or short take-off and landing,垂直或短距起降)装置喷气的吸入、导弹/炮弹热气流的吸入及舰载飞机水蒸气的吸入等。
一体化设计时要考虑到进气道的来流是处于机身的干扰流场中的,不是均匀的,进气道的形式及其与机身的相对位置决定着来流的不均匀性。
图4所示为战斗机常用的进气道形式及其布置方式,大致存在两侧进气和腹部进气两种方式,并有二维(矩形)进气道和轴对称(圆形或部分圆形)进气道两种形状。
图5所示为Ma=0.9时进气道的两个重要性能指标(总压恢复和湍流度)与进气道形式、迎角、侧滑角大小的关系。在Ma=0.9时,有
(1)机身屏蔽的腹部进气形式(如F-16飞机所采用的)比其他两种形式的总压恢复及湍流度性能好。
(2)总压恢复和湍流度在两侧进气或翼下进气时,对侧滑角和迎角的变化很敏感;在腹部进气时,则不太敏感。
此例当然并不能证明在各种飞行速度下腹部进气都优于其他进气形式,但却充分表明进气道形式对性能的重要影响,必须根据任务需求综合各种因素确定进气道形式,实现最优设计,如F-15采取了两侧进气的形式,F-16采用了腹部进气的形式。
进气道的来流处于前机身的流场中,故一体化设计的核心任务是合理地安排进气道与机身的相对位置,细致地设计前机身的流场,使进气道与前机身具有优良的气动性能。为此,需要考虑:前机身的头部设计,前机身的细长比、弯度,及其相对机身纵轴的倾斜。
图6所示为一个两侧进气的二维进气道模型如何由于机身设计的细致修改而提高了进气道的性能。
如图6中(a)所示,进气道相对机身往下移动仅2cm即可使总压恢复得到显著的提高。如图6中(b)所示,机身头部相对机身轴线上转4°可显著提高总压恢复。如图6中(c)所示,进气道相对来流方向偏转如1°的小角度可改善总压恢复随流量变化的性能。如图6中(d)所示,机身侧壁不平行来流,与来流形成小倾角(如2°)可使进入进气道的气流得到预压缩而提高总压恢复(如4%)。
此外,前机身的设计还需考虑:
(1)机身下表面的形状。在两侧进气大迎角情况下机身下表面形状对进气道气流影响很大,一般平底机身在进气口前会引起较强的横向流动,圆滑下表面则对进气有利,这就是F-15在进气道附近的机身横截面的下表面形状类似于直椭圆的一部分的原因。
(2)座舱盖形状的设计。这对战斗机很重要。为了得到好的视野,通常座舱盖尺寸会较大,必然会对前机身的流场形成影响。
下面以F-15的进气道形式具体说明前机身/进气道一体化设计如何实现。