自20世纪70年代基于吸附选择性的空分体系商业化以来,PSA制氧技术在炼钢、焊接、医疗、制药、发酵、造纸、环保、水产等领域都得到了广泛的应用。变压吸附气体分离过程是一个动态过程,描述其动态过程的行为是偏微分方程组构成的模型,操作性能和参数之间为复杂的非线性关系,实验研究与数学模拟均不简单,工作量大,所以变压吸附气体分离技术存在着商业开发领先于理论研究的问题。对它的理论研究远不如变温吸附过程深入,尤其对多组分、多吸附剂、非线性吸附等温线、非等温和非平衡吸附的变压吸附过程的理论研究较为缺乏,不能适应工业应用的要求。采用计算机数值模拟计算的方法,研究变压吸附过程的动态行为,揭示操作参数和过程性能之间的关系对于指导试验工作,进行过程优化设计有着重要的意义。研究将采用非等温模型的模拟计算来研究影响变压吸附制氧过程性能的诸多因素,考虑所用模型及数值计算方法的通用性和高效性。模拟内容反映吸附床层内温度和浓度的动态行为,以揭示变压吸附过程操作参数清洗比P/F、吸附压力、进气流量、吸附时间与氧气纯度、回收率之间的关系,为变压吸附制氧过程的优化设计提供了基础。
变压吸附过程选取经典的二床六步骤循环,步骤及时间分配如表1所示。
吸附过程流程示意图如图1所示。
建立用于描述变压吸附过程的数学模型采用如下假设:气体为理想气体;流体流动模型为轴向分散活塞流模型;轴向流速在床层内可变化;忽略吸附时床层轴向压降;传质速率方程可用线性推动力(LDF)模型描述;等温线模型为负载比关联(LRC)的Langmuir吸附模型;假设气相和固相热传递瞬时平衡,变压吸附过程中变压步骤的压力呈指数型变化。
用数值求解偏微分方程组,都需要首先将偏微分方程在空间变量上离散化,转化为常微分方程组,然后再应用常微分方程组的数值求解方法进行数值求解。上述模型中的偏微分方程组采用正交配置法在轴向上进行离散化,使之成为一系列常微分方程组。常微分方程组的数值积分采用三阶半隐式Runge-Kutta法。采用正交配置的优点在于在获得同样的准确度下只需要较少的变量离散点;而半隐式Runge-Kutta法既适合求解显式RungeKutta不能有效求解或不能求解的陡峭常微分方程组体系,又可同时求解微分代数方程组体系,计算时间较少。计算程序用FORTRAN语言编写。
任何复杂的PSA分离过程都可以分解为一系列相对简单的步骤,而且每个床层都经历同样的过程步骤,因此解一个吸附床层的模型方程并循环起来,就可以得到整个过程的解。这种方法不受床数的限制,可以用于任意床数的过程模拟。计算过程中每一步结束时保存床层轴向的组成和温度分布作为下一个步骤的初始值。吸附和均降步骤中不同时间离开床层的气体组成、温度和流速以数组的形式保存,经过线性插值作为清洗和均升阶段的进气条件。
模拟计算为跟踪床层浓度及温度的动态行为。模拟计算结果表明:床层中温度从波动到达稳态比浓度从波动到达稳态慢,温度一般要在15个循环后逐渐达到稳定,而浓度在几个循环就能达到稳态。床层内浓度的变化是很难测定的,因此模拟床层内的浓度变化是有意义的工作。为考察清洗比(P/F)、吸附压力、进气流速、吸附时间等操作参数对过程性能的影响,即对回收率与纯度的影响(氧气纯度为吸附过程出气的体积平均值),定义回收率与清洗比如下:
O2回收率=(吸附过程产品气氧气总量-清洗过程耗氧总量)/(原料气冲压和吸附阶段进气氧气量)×100%=R(O2)
P/F=清洗过程耗氧量/吸附过程进气氧总量
应用非等温模型模拟计算空分制氧变压吸附过程,研究过程的特征与性能,得到如下结论。
(1)模拟了变压吸附过程床层中氧气浓度与温度的动态变化。浓度达到稳态比温度快,浓度达到稳态大约需要10个循环,而温度在15个循环后变化才减小;
(2)随着清洗比(P/F)的增加,氧气纯度上升,回收率下降,在高清洗比(P/F)时纯度变化很小,回收率持续下降;
(3)随着压力的增大,氧气的纯度升高而回收率降低。压力在低清洗比(P/F)下的影响比在高清洗比(P/F)大,在压力大于4×105Pa后纯度基本不变;
(4)氧气的纯度随进气流量增大而减小,回收率却随流速的增加而升高;
(5)纯度随吸附时间的增加而降低,回收率随着吸附时间的延长而升高。 2100433B