饱和压力通常是由PVT 取样分析获得的。为取得具有代表性的样品,对取样井的条件要求非常严格,而现场往往难以满足这些条件。使用压力恢复曲线来求取饱和压力,不仅弥补了高压物性分析数量有限和取样条件苛刻等缺陷,而且拓宽了压力恢复曲线的应用范围,还可节约高压物性取样及分析的成本。该方法在SX 油田SN 区块的应用,取得了令人满意的结果。。
利用霍纳曲线切线之切点确定饱和压力(也可以用导数曲线或拟合曲线求二阶导数获得)。压力恢复曲线一般可分为4 段:早期缓升段、陡升段、直线段、边界上翘或下跌段。前两段主要反映的是井筒储集效应和表皮效应,对低地饱压差油气藏,井筒储集效应中流体相态的变化占主导地位,这就是用压力恢复曲线确定低地饱压差的油气藏饱和压力的依据。
(1)孔隙型储层饱和压力的确定
孔隙型储层压力恢复曲线( 霍纳曲线) 具有标准形状,即缓升段、陡升段、直线段,有时也出现边界显示段为典型的“S” 形曲线。这类储层的饱和压力确定在霍纳曲线上多取直线段与曲线段相切之切点对应的压力; 若直线段不易确定,则取相应部位曲线之拐点对应的压力或由导数曲线求取。
(2)双重介质储层饱和压力的确定
广义的双重介质包括双孔单渗与双孔双渗两种类型。通常所言的双重介质是指狭义的双孔单渗型, 这种类型储层饱和压力确定方法与上述孔隙型储层相同。这里仅介绍双孔双渗型储层流体饱和压力的确定方法。对这类储层压力恢复曲线研究发现,其饱和压力为第一直线段与其后面曲线相切之切点对应的压力, 若无第一直线段,取第一曲线之拐点对应的压力。对裂缝型储层,由于流动阻力小, 压降也很小,压力恢复曲线较为平直,井底流压大致与饱和压力接近,这种情况饱和压力不易确定。