高炉炉缸产生的煤气,在炉缸与炉喉的压差(△p)的作用下,穿过整个料柱运动到炉喉的料面上。这个压差所反映的能量损失也称压头损失,它主要消耗在克服炉料对煤气运动的阻力上,而阻力损失主要有:一是由于煤气并非理想气体,有一定黏度,会与通道壁产生摩擦而损失能量,这一部分称摩擦阻力损失;另一则由于气体通过料层时,路径时宽时窄,质点的轨迹十分曲折,要克服湍流、漩涡和截面突然变化而造成的能量损失,这一部分称为局部阻力损失。这些阻力损失直接决定着炉内的压力变化和气流分布,气流总是在阻力小的地方通过得多些,阻力大的地方少些。研究高炉煤气运动规律的基本目的是如何减少气体的阻力,多鼓风,多出铁,同时使气流分布均匀,煤气的热能和化学能得到充分的利用,降低冶炼能耗。
块状带△p的表达式 在研究类似高炉炉料的散料层中的气体运动时,通常将气体通过料块空隙的运动,假设为气体沿着彼此平行、有着不规则形状和不稳定截面、互不相通的管束的运动。这样,就可以应用流体力学中关于气体通过无填充管道的压头损失的一般公式,并通过试验,修正公式中的阻力系数得到半经验公式。在研究分析高炉煤气运动时,经常应用的表达式有扎沃隆科夫(Н.М.Жаваронков)公式:如图1 所示。
式中γ,ρ为气体的密度,kg/m3;ω为气体的空炉速度,m/s;v为气体的运动黏度系数,m/s;ε为炉料的空隙度(量纲为1);g为重力加速度,m/s;dэ为炉料中通道的当量直径,m;dp为炉料的平均直径,m;Φ为形状系数,即炉料颗粒与球粒的差异程度(量纲为1)。扎沃隆科夫公式过去为俄国学派普遍采用,他认为高炉内煤气运动处在不稳定紊流区,相当于层流转变为紊流的过渡区。厄根公式是欧美学派的代表,他认为高炉煤气运动是紊流状态。现在冶金工作者普遍认为高炉煤气运动是处在紊流区内,所以它已取代扎沃隆科夫公式而广泛应用于世界各国的研究工作和文献中。
影响△p的因素主要是原料特性和煤气特性。原料特性主要是指它的粒度组成和空隙度,煤气特性主要是指煤气流速、温度、黏度和压力;前者决定了炉料的透气性,后者决定了煤气通过料层的能量大小,并集中地反应在△p的表达式中。