本项目研究综合性样条的理论与应用。综合性样条是近年来才出现的样条的新品种,其特点是兼有多样性与简便性。多样性指一条样条曲线上有多种类型的曲线段存在;简便性指样条曲线的求导要简单,计算要稳定、方便。NURBS具有多样性,但不具备简便性;B样条虽有简便性,但缺少多样性。相比之下,综合性样条的优点是突出的。本项目的研究难点,在于综合性样条定义空间的构造,无现成研究样条的方法可循。为此,本项目首先要创造新方法,构造该空间。该空间要具有联合性与可变性。联合性要求该空间能融合多个空间于一个整体;可变性能使综合性样条曲线曲面可以从其中的一个空间变到另外一个空间。其次要在该空间中构造具有权性,局部支撑性的B基。该基应具有可变性。通过可变性统一多样性和简便性,最后,要研究综合性样条曲线曲面的性质,发扬多样性、利用简便性,建立富有特色的理论体系,要设计高效算法,使其在CAD和逆向工程应用中发挥巨大的作用。