连续性方程是质量守恒定律在流体力学中的一种表达形式。
液体的可压缩性很小,在一般情况下认为是不可压缩的,即密度ρ为常数。由质量守恒定律可知,理想液体在通道中作稳定流动时,液体的质量既不会增多,也不会减少,因此在单位时间内流过通道任一通流截面的液体质量一定是相等的。如左所示,管路的两个通流面积分别为A1、A2,液体流速分别为v1、v2,液体的密度ρ为,则有
ρv1 A1=ρv2 A2=常量
v1 A1=v2 A2=q=常量 (1-1)
式(1-1)称为液流的连续性方程,它说明不可压缩液体在通道中稳定流动时,流过各截面的流量相等,而流速和通流截面面积成反比。因此,流量一定时,管路细的地方流速大,管路粗的地方流速小。
在具有分支的管路中,有Q1=Q2 Q3的关系。
伯努利方程是能量守恒定律在流动液体中的表现形式。为了讨论问题方便,我们先讨论理想液体的流动情况,然后再扩展到实际液体的流动情况。
1、理想液体的伯努利方程
理想液体在管内稳定流动时没有能量损失。在流动过程中,由于它具有一定的速度,所以除了具有位置势能和压力能外,还具有动能。如图2-13所示,取该管上的任意两截面1-1和2-2,假定截面积分别为A1、A2,两截面上液体的压力分别为p1、p2速度分别为v1和v2,由两截面至水平参考面的距离分别为h1、h2。根据能量守恒定律,重力作用下的理想液体在通道内稳定流动时的伯努利方程为
p1 1/2ρv1^2 ρgh1=p2 1/2ρv2^2 ρgh2
或 p ρgh (1/2)*ρv^2=常量 (1-2)
式中p为单位体积液体的压力能; 为单位体积液体相对干水平参考面的位能;ρv2/2为单位体积液体的动能。
式(1-2)即为理想液体的伯努利方程,它表明了流动液体各质点的位置、压力和速度之间的关系。其物理意义为:在管内做稳定流动的理想液体具有动能、位置势能和压力能三种能量,在任一截面上的这三种能量都可以互相转换,但其和都保持不变。由此可见,静压力基本方程是伯努利方程(流速为零)的特例。
2、实际液体的伯努利方程
式(1-2)是理想液体的伯努利方程,但实际液体具有黏性,在过流断面上各点的速度是不同的,所以方程中ρv×v/2这一项要进行修正,其修正系数为a,称为动能修正系数。一般液体处于层流流动时取a=2,液体处于紊流流动时,取a=1。另外,由于液体有黏性,会产生内摩擦力,因而造成能量损失。若单位质量的实际液体从一个截面流到另一截面的能量损失用Δpw表示,则实际液体的伯努利方程为
p1 1/2ρα1v1^2 ρgh1=p2 1/2ρα2v2^2 ρgh2 Δpw
动量方程是动量定理在流体力学中的应用。由动量定理可知:作用在物体上的外力等于物体在受力方向上的动量变化率,即ΣF=mv2/Δt-mv1/Δt
对于在管道内作稳定流动的液体,若忽略其可压缩性,可将m=ρqΔt代入上式。考虑到以平均流速代替实际流速会产生误差,因而引入动量修正系数β,则上式变成
ΣF=ρqv2-ρqv1=ρqβ2va2-ρqβ1va1
上式为流动液体的动量方程(矢量方程)。当液流为紊流时取β=1,为层流时取β=1.33。2100433B