造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

热分析典型的热分析技术

2022/07/16162 作者:佚名
导读:热分析差示扫描量热(DSC) 差示扫描量热法是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。可分为功率补偿型DSC和热流型DSC。 功率补偿DSC原理图: 功率补偿型的DSC是内加热式,装样品和参比物的支持器是各自独立的元件,在样品和参比物的底部各有一个加热用的铂热电阻和一个测温用的铂传感器。它是采用动态零位平衡原理,即要求样品与参比物温度,无论样品吸热还是放热时都要维持动态

热分析差示扫描量热(DSC)

差示扫描量热法是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。可分为功率补偿型DSC和热流型DSC。

功率补偿DSC原理图:

功率补偿型的DSC是内加热式,装样品和参比物的支持器是各自独立的元件,在样品和参比物的底部各有一个加热用的铂热电阻和一个测温用的铂传感器。它是采用动态零位平衡原理,即要求样品与参比物温度,无论样品吸热还是放热时都要维持动态零位平衡状态,也就是要保持样品和参比物温度差趋向于零。DSC测定的是维持样品和参比物处于相同温度所需要的能量差(ΔW=dH/dt),反映了样品焓的变化。

热流型DSC原理图:

1、鏮铜盘;2、热电偶结点;3、镍铬板;4、镍铝板;5、镍铬丝;6、加热块。

热流型DSC是外加热式,采取外加热的方式使均温块受热然后通过空气和康铜做的热垫片两个途径把热传递给试样杯和参比杯,试样杯的温度有镍铬丝和镍铝丝组成的高灵敏度热电偶检测,参比杯的温度由镍铬丝和康铜组成的热电偶加以检测。由此可知,检测的是温差ΔT,它是试样热量变化的反映。

这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。 可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。同时差示扫描量热法能定量地测定各种热力学参数,灵敏度高,工作温度可以很低,所以它的应用很宽,特别适用于高分子、液晶、食品工业、医药和生物等领域的研究工作 。

热分析差热分析(DTA)

差热分析法是以某种在一定实验温度下不发生任何化学反应和物理变化的稳定物质(参比物)与等量的未知物在相同环境中等速变温的情况下相比较,未知物的任何化学和物理上的变化,与和它处于同一环境中的标准物的温度相比较,都要出现暂时的增高或降低。降低表现为吸热反应,增高表现为放热反应。可分为密封管型DTA、高压DTA仪、高温DTA仪和微量DTA仪。

差热分析原理图:

一般的差热分析装置由加热系统、温度控制系统、信号放大系统、差热系统和记录系统等组成。有些型号的产品也包括气氛控制系统和压力控制系统。

当给予被测物和参比物同等热量时,因二者对热的性质不同,其升温情况必然不同,通过测定二者的温度差达到分析目的。以参比物与样品间温度差为纵坐标,以温度为横座 标所得的曲线,称为DTA曲线。

在差热分析中,为反映这种微小的温差变化,用的是温差热电偶。它是由两种不同的金属丝制成。通常用镍铬合金或铂铑合金的适当一段,其两端各自与等粗的两段铂丝用电弧分别焊上,即成为温差热电偶。

在作差热鉴定时,是将与参比物等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中。

在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地 确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。不同的物质所产生的热电势的大小和温度都不同,所以利用差热法不但可以研究物质的性质,还可以根据这些性质来鉴别未知物质。

其特点有:

1)含水化合物

对于含吸附水、结晶水或者结构水的物质,在加热过程中失水时,发生吸热作用,在差热曲线上形成吸热峰。

2)高温下有气体放出的物质

一些化学物质,如碳酸盐、硫酸盐及硫化物等,在加热过程中由于CO2、SO2等气体的放出,而产生吸热效应,在差热曲线上表现为吸热峰。不同类物质放出气体的温度不同,差热曲线的形态也不同,利用这种特征就可以对不同类物质进行区分鉴定。

3)矿物中含有变价元素

矿物中含有变价元素,在高温下发生氧化,由低价元素变为高价元素而放出热量,在差热曲线上表现为放热峰。变价元素不同,以及在晶格结构中的情况不同,则因氧化而产生放热效应的温度也不同。

4)非晶态物质的重结晶

有些非晶态物质在加热过程中伴随有重结晶的现象发生,放出热量,在差热曲线上形成放热峰。此外,如果物质在加热过程中晶格结构被破坏,变为非晶态物质后发生晶格重构,则也形成放热峰。

5)晶型转变

有些物质在加热过程中由于晶型转变而吸收热量,在差热曲线上形成吸热峰。因而适合对金属或者合金、一些无机矿物进行分析鉴定。

DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

热分析热重分析(TGA)

热重分析法(TG)是在程序控制温度下测量物质质量与温度关系的一种技术。许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化。如熔化、蒸发、升华和吸附等物质的物理现象,也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。

TG分析曲线:

当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质。

热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。

最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。

通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加 。

热分析热机械分析(DMA)

动态热机械分析是通过对材料样品施加一个已知振幅和频率的振动,测量施加的位移和产生的力,用以精确测定材料的粘弹性,杨氏模量(E*)或剪切模量(G*)。 可分为:

1、热膨胀法

热膨胀法是在程序控温下,测量物质在可忽略负荷时尺寸与温度关系的技术。

2、静态热机械分析法

静态热机械分析法是在程序控温下,测量物质在非振动负荷下的温度与形变关系的技术。

3、动态热机械分析法

动态热机械分析法是在程序控温下, 测量物质在振动载荷下的动态模量或力学损耗与温度的关系的技术。

DMA主要应用于:玻璃化转变和熔化测试,二级转变的测试,频率效应,转变过程的最佳化,弹性体非线性特性的表征,疲劳试验,材料老化的表征,浸渍实验,长期蠕变预估等最佳的材料表征方案。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读