递归关系是序列的项之间的一种关系。指序列的任一项均被其前若干项所确定的那种关系。对于数列{an|n=0,1,2,…},若当n≥0时,恒有关系式:
an k=F(an k-1,…,an),
这里k为正整数,F为元an k-1,…,an的代数函数,且an必在式中出现,则an k=F(an k-1,…,an)称为数列{an|n=0,1,2,…}的一个逆归关系。若给定此递归关系,且给出a0,a1,…,ak-1的一组初值,则数列{an|n=0,1,2,…}完全确定。例如,递归关系an 2=an 1 an及初值a0=a1=1完全确定数列1,1,2,3,5,8,…,称为斐波那契数列。使用计算机,根据给定递归关系和初值计算相应的数列的项很方便。因此,递归关系是研究数列的一个有力工具。