造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

相对论角动量简介

2022/07/16126 作者:佚名
导读:相对论角动量是角动量在狭义相对论与广义相对论中的数学形式与物理概念,其与传统在经典力学中的(三维)角动量有些许差异 (GR)。 角动量是由位置与动量衍生出的物理量,其为一物体“转动程度”的测度,也反映出对于停止转动的阻抗性。此外,如同动量守恒对应到平移对称性,角动量守恒对应旋转对称性——诺特定理将对称性与守恒律联结起来。这些观念在经典力学中即相当重要,而在狭义与广义相对论中亦占有重要角色。透过抽象

相对论角动量是角动量在狭义相对论与广义相对论中的数学形式与物理概念,其与传统在经典力学中的(三维)角动量有些许差异 (GR)。

角动量是由位置与动量衍生出的物理量,其为一物体“转动程度”的测度,也反映出对于停止转动的阻抗性。此外,如同动量守恒对应到平移对称性,角动量守恒对应旋转对称性——诺特定理将对称性与守恒律联结起来。这些观念在经典力学中即相当重要,而在狭义与广义相对论中亦占有重要角色。透过抽象代数中的庞加莱群、洛伦兹群可描述角动量、四维动量以及其他时空中的对称的不变性。

在经典物理中不同类别的物理量,透过相对性原理在狭义与广义相对论中自然的统合:比如时间与空间结合为四维位置,能量与动量结合为四维动量。这些四维矢量与所使用的参考系相依,参考系之间的变换关系由洛伦兹变换来联系。相对论角动量的关系式则不那么明显…经典力学中的角动量定义为位置x与动量p的叉积,产生了一个赝矢量x×p;其亦可透过外积产生一个二阶反对称张量x∧p。

在此有一不常提及的矢量——时变质量矩(英语:time-varying moment of mass),其非惯性矩,而是与质心的相对速度有关。时变质量矩与经典力学的角动量一起形成一个二阶反对称张量。对于旋转的质能分布(比如陀螺仪、行星、恒星、黑洞等),角动量张量与旋转物体的应力-能量张量有关。

在狭义相对论情形,在自转物体的静止系中有一内禀角动量,类似于量子力学中的自旋,差别在于本篇谈论对象是巨观物体,而量子力学的自旋粒子是点粒子不可分割。相对论量子力学中,自旋角动量算符与轨道角动量算符加总为总角动量算符,为一张量算符。通例上,这样的加总关系可以泡利—卢班斯基赝矢量来描述。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读