(1)转置后秩不变
(2)r(A)<=min(m,n),A是m*n型矩阵
(3)r(kA)=r(A),k不等于0
(4)r(A)=0 <=> A=0
(5)r(A B)<=r(A) r(B)
(6)r(AB)<=min(r(A),r(B))
(7)r(A) r(B)-n<=r(AB)
证明:
AB与n阶单位矩阵En构造分块矩阵
|AB O|
|O En|
A分乘下面两块矩阵加到上面两块矩阵,有
|AB A|
|0 En|
右边两块矩阵分乘-B加到左边两块矩阵,有
|0 A |
|-B En|
所以,r(AB) n=r(第一个矩阵)=r(最后一个矩阵)>=r(A) r(B)
即r(A) r(B)-n<=r(AB)
注:这里的n指的是A的列数。这里假定A是m×n矩阵。
特别的:A:m*n,B:n*s,AB=0 -> r(A) r(B)<=n
(8)P,Q为可逆矩阵, 则 r(PA)=r(A)=r(AQ)=r(PAQ)
(9)若矩阵可相似对角化则矩阵的秩等于矩阵非零特征值的个数。2100433B