正交橄榄石结构的LiFePO4 正极材料已逐渐成为国内外新的研究热点。该新型正极材料集中了LiCoO2、LiCoxNiyMnzO2(x y z=1)、LiMn2O4 这3种目前在锂离子电池上大量使用的正极材料的优点:不含贵重元素,原料廉价,资源极大丰富;工作电压适中(3.2V);平台特性好,电压极平稳(可与稳压电源媲美);理论容量大(170mAh/g);结构稳定,安全性能极佳(O 与P 以强共价键牢固结合,使材料很难析氧分解);高温性能和热稳定性明显优于已知的其它正极材料;循环性能好;充电时体积缩小,与碳负极材料配合时的体积效应好;与大多数电解液系统兼容性好,储存性能好;无毒,为真正的绿色材料。
与LiCoO2、LiCoxNiyMnzO2(x y z=1)、LiMn2O4 等正极材料相比,LiFePO4 正极材料在成本、高温性能、安全性方面具有突出的优势,可望成为中大容量、中高功率锂离子电池首选的正极材料。
该材料的产业化和普及应用对降低锂离子电池成本,提高电池安全性,扩大锂离子电池产业,促进锂离子电池大型化、高功率化具有十分重大的意义,将使锂离子电池在中大容量UPS、中大型储能电池、电动工具、电动汽车中的应用成为现实。
然而,磷酸铁锂堆积密度低的缺点一直难以找到有效的解决方法,这阻碍了材料的实际应用。钴酸锂的理论密度为5.1g/cm3,商品钴酸锂的振实密度一般为2.2-2.4g/cm3;而磷酸铁锂的理论密度仅为3.6g/cm3,本身就比钴酸锂要低得多。
为提高导电性,人们掺入导电碳材料,又显著降低了材料的堆积密度,使得一般掺碳磷酸亚铁锂的振实密度只有1.0-1.3g/cm3。如此低的堆积密度使得磷酸亚铁锂的体积比容量比钴酸锂低很多,制成的电池体积大,成本相对较高,影响了实际应用。
因此,提高磷酸亚铁锂的堆积密度和体积比容量对磷酸亚铁锂的实用化具有决定意义。粉体材料的颗粒形貌、粒径及其分布直接影响材料的堆积密度,为此,人们对磷酸亚铁锂材料向球形方向进行研究。研究和实际应用表明,球形产品不仅具有堆积密度高、体积比容量大等突出优点,而且还具有优异的流动性、分散性和可加工性能,十分有利于制作正极材料浆料和电极片的涂覆,提高极片品质;此外,相对于无规则的颗粒,规则的球形颗粒表面比较容易包覆完整、均匀、牢固的修饰层,因此球形产品更有希望通过表面修饰进一步改善综合性能。
人们进行湿法前驱体预处理、2次烧结的研究。在此基础上,添加含碳的材料和过渡元素氧化物、稀土元素氧化物等方式,采用二价铁盐或三价铁盐、磷酸或磷酸盐、氨水为原料,通过控制结晶技术合成高密度球形磷酸亚铁前驱体,再与锂源、碳源共混热处理,通过碳热还原法合成掺碳的高密度近球形磷酸亚铁锂。该磷酸亚铁锂粉体材料由单分散球形颗粒组成、粒径可达到4.5-10μm、振实密度可达1.4-1.8g/cm3、可逆容量超过了150mAh/g,导电性提高了100万倍的LiFePO4 正极材料,这对磷酸亚铁锂材料应用到大容量、高功率的锂离子电池上成为可能,极大地促进该材料的产业化。 2100433B