一个收敛的级数,如果在逐项取绝对值之后仍然收敛,就说它是绝对收敛的;否则就说它是条件收敛的。
简单的比较级数就表明,只要∑|un|收敛就足以保证级数收敛;因而分解式(不仅表明∑|un|的收敛隐含着原级数∑un的收敛,而且把原级数表成了两个收敛的正项级数之差。由此易见,绝对收敛级数同正项级数一样,很像有限和,可以任意改变项的顺序以求和,可以无限分配地相乘。
但是条件收敛的级数,即收敛而不绝对收敛的级数,决不可以这样。这时式右边成为两个发散(到 ∞)的、其项趋于零的、正项级数之差,对此有黎曼定理。
一个条件收敛的级数,在其项经过适当的排列之后,可以收敛到一个事先任意指定的数;也可以发散到 ∞或-∞;也可以没有任何的和。
一致收敛是收敛性与函数连续性结合的最重要的形式。2100433B