病毒尺寸一般约80~100nm,细菌为数百纳米,而细胞则更大,因此利用纳米复合粒子性能稳定、不与胶体溶液反应且易实现与细胞分离等特点,可将纳米粒子应用于诊疗中进行细胞分离。该方法同传统方法相比,具有操作简便、费用低、快速、安全等特点。美国科学家用纳米粒子已成功地将孕妇血样中微量的胎儿细胞分离出来,从而简便、准确地判断出胎儿细胞中是否带有遗传缺陷。
利用不同抗体对细胞内各种器官和骨骼组织的敏感程度和亲和力的显著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体混合,制备成多种纳米金/抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色) ,从而给各种组合“贴上”了不同颜色的标签,因而为提高细胞内组织的分辨率提供了一种急需的染色技术。
按抗菌机理,纳米抗菌材料分为三类:一类是Ag系抗菌材料,其利用Ag 可使细胞膜上的蛋白失活,从而杀死细菌。在该类材料中加入钛系纳米材料和引入Zn 、Cu 等可有效地提高其的综合性能; 第二类是ZnO、TiO2等光触媒型纳米抗菌材料,利用该类材料的光催化作用,与H2O 或OH反应生成一种具有强氧化性的羟基以杀死病菌;第三类是纳米蒙脱土等无机材料,因其内部有特殊的结构而带有不饱和的负电荷,从而具有强烈的阳离子交换能力,对病菌、细菌有强的吸附固定作用,从而起到抗菌作用。
材料支架在组织工程中起重要作用,因为贴壁依赖型细胞只有在材料上贴附后,才能生长和分化。模仿天然的细胞外基质2胶原的结构,制成的含纳米纤维的生物可降解材料已开始应用于组织工程的体外及动物实验,并将具有良好的应用前景。国内清华大学研究开发的纳米级羟基磷灰石/ 胶原复合物在组成上模仿了天然骨基质中无机和有机成分,其纳米级的微结构类似于天然骨基质。体外及动物实验表明,此种羟基磷灰石/胶原复合物是良好的骨修复纳米生物材料。
随着纳米技术的发展,生物活性杂化材料在保持柔韧性的同时,弹性模量已接近硅酸硼玻璃,而且便于加入活性物质,因此是一种开发生物材料的理想途径。JonesSM 等用TEOS(正硅酸乙酯) 、甲基丙烯酰胺在偶氮类引发剂作用下,加入氯化钠制备出含钙盐的纳米SiO2聚合物复合材料,将其在人体液中放置1周后,可以观察到其表面有羟基磷灰石层形成,因而具有较好的生物活性。应用溶胶/ 凝胶技术制备纳米复合材料,同时在体系中引入胺基、醛基、羟基等有机官能团,使材料表面具有反应活性,可望在生化物质固定膜材料、生物膜反应器等方面获得较大应用。