高品质钢要求钢液尽可能纯净。钢中非金属夹杂物有相当一部分是氧化物,常将钢中氧含量作为衡量钢质量的重要指标。此外,TiN 是一种具有规则外形的硬而脆的夹杂物,对钢的性能特别有害。控制 TiN 夹杂物的主要途径就是降低钢液的 Ti 和 N 含量。
为了获得较低的氧含量,需要在出钢过程中加入脱氧剂以生成脱氧产物,大部分脱氧产物可以从钢液中排除。 出钢过程钢液完全裸露,与大气直接接触,会发生吸氮现象. 氧是表面活性元素,可以阻碍钢液吸氮,若出钢过程钢水氧含量较高,钢液吸氮则相对减少。因此在出钢过程采用强脱氧剂进行脱氧,钢水中氧含量会大大降低,吸氮会迅速增加,这对控制氮含量是极为不利的。
对于最终产品,采用方式( Ⅱ) 脱氧能有效地控制氮含量,其得到的氮质量分数比采用方式( Ⅰ) 脱氧得到的氮质量分数低 5×10-6 左右。观察两种不同脱氧方式 LF 处理前的全氧质量分数,采用方式( Ⅱ) 脱氧的全氧质量分数平均达到 146.38×10-6 ,平均氮质量分数仅为 16.12×10-6 ; 而采用方式( Ⅰ) 脱氧的平均全氧质量分数为 21.18×10-6 ,平均氮质量分数则为 20.92×10-6 ,明显比采用方式( Ⅱ) 脱氧的氮质量分数高。这里的氧含量也验证了热力学分析的结果,出钢过程中钢液氧含量高可以有效地控制钢液吸氮,从控氮的角度考虑,出钢弱脱氧方式更为有利。
1 脱氧产生的夹杂物形貌:
采用方式( Ⅱ) 脱氧 LF 进站时的主要夹杂物形貌。夹杂物主要有深色和浅色两部分:经能谱分析各夹杂物深色 部分主要为SiO2,浅色部分主要为 MnO--SiO2 和少量MnS,还含有一部分钛的化合物,钢中的夹杂物主要为 MnO--SiO2复合夹杂物,这种复合夹杂物呈两种形态,一种是MnO--SiO2 夹杂物中包裹着 SiO2 ,另一种为完全的MnO--SiO2 夹杂物; 此外还有极少量的单独 SiO2 夹杂物。 复合夹杂物的尺寸较大,大多数夹杂物尺寸超过了 20 μm,在扫描电子显微镜下还可以发现一定数量尺寸超过 50 μm 的夹杂物。
2 脱氧夹杂物的生成过程:
依据热力学分析,可以推断采用 Si--Mn 弱脱氧时夹杂物的生成过程:
( a) Si--Mn 弱脱氧,Si 的脱氧能力较 Mn 强,因此出钢时钢液中氧首先与 Si 反应生成 SiO2 夹杂物;
( b) Mn 逐 渐 与 SiO2 反应生成液态的 MnO--SiO2 将 SiO2 裹覆,夹杂物呈球状,随着反应的进行,外层的 MnO--SiO2 逐渐变多,内核的SiO2 逐渐溶解;
( c) MnO--SiO2 裹覆 SiO2 的复合夹杂物互相碰撞聚合,形成 MnO--SiO2 裹覆多个 SiO2 内核的复合夹杂物 ,因 MnO--SiO2 为液态,因此夹杂物仍然呈现球状;
( d) 复合夹杂物内多个 SiO2 内核不仅不断溶解,还会在液态的 MnO--SiO2 基体中迁移并发生碰撞聚合,显示了两个 SiO2 内核碰撞情形;
( e) 随着反应的进行,SiO2 内核最终完全溶解在 MnO--SiO2 基体中,形成完全液态的 MnO--SiO2夹杂物。
采用方式( Ⅰ) 脱氧 LF 精炼钙处理前的主要夹杂物形貌及其能谱。钙处理前夹杂物主要为球状的 CaS 和 CaO--MgO--Al2 O3夹杂物。 出现大量球状夹杂物原因是渣系的碱度很高,使 Al2 O3 夹杂物易于生成钙铝酸盐夹杂物,这类夹杂物熔点较低,在钢液中呈液态。
采用方式(Ⅱ) 脱氧 LF 精炼钙处理前的主要夹杂物形貌及其能谱。钙处理前夹杂物也主要为球状的 CaS 和CaO--MgO--Al2 O3 夹杂物,夹杂物中并不含 Si,与方式(Ⅰ) 的结果一致,其尺寸也并没有太明显的差异。出钢过程采用 Si--Mn 弱脱氧生成 MnO--SiO2 复合夹杂物,一部分夹杂物上浮至渣中,一部分残留在钢液中.当向钢中喂入 Al 线时,Al 迅速将残留在钢液中的 MnO--SiO2 复合夹杂物还原,生成 Al2 O3 夹杂物和 Si--Mn,使得钢中的主要夹杂物又变成 Al2 O3 夹杂物。在采用高碱度渣精炼时,Al2 O3 夹杂物又生成钙 Al 酸盐夹杂物,这与出钢采用强脱氧方式的结果一致。