环烷基正离子的稳定性顺序为环丙基正离子< 环丁基正离子< 环戊基正离子< 环己基正离子。这主要是因为随着环上碳原子数量的增加,C-C-C 键角逐渐增加,环张力减小。环丙基正离子要比异丙基正离子稳定 6.9 kcal/mol。这可能是环丙烷分子中的重叠张力消失的结果。
因为三点确定一个面,所以环丙烷的三个碳原子必须在同一平面上,碳原子核连线之间的夹角应为 60°。若环碳原子以 sp3的形式杂化,则分子轨道之间的正常角度应为 109°28′。因此在形成环丙烷时,可以有两种选择:一种是保持正常轨道 109°,轨道彼此间电子的排斥最小(正四面体),但这样就会使两个轨道重叠得非常不好。另一种是不管轨道间的电子排斥,而使轨道的轴和碳原子之间的轴在同一直线上,以达到最大的重叠。而实际上测得环丙烷分子的 C−C−C 键角为 105°30′,H−C−H 的键角为 115°,C−C 键长和 C−H 键长分别是 151.0 pm 和108.9 pm。这说明,为了使分子的能量达到最合适的程度,实际上环丙烷中的价键是这两种成键方式协调的一个结果,也就是既大略地保持原来轨道间的角度,又达到一定程度重叠而形成一个弯曲的键或称为香蕉键。因此环丙烷的碳碳单键比一般碳碳单键的键长(154pm)要短。由于三个碳原子形成了环,所以六个氢原子都形成重叠型,并且是均等的。这样就存在着很强的重叠张力。环丙基正离子中也存在着这种特殊的香蕉键,但由于失去了一个氢,在环丙烷中存在的很强的重叠张力却减弱了,但是角张力却更大了。
之前的报道显示环戊二烯基正离子能量要比甲基正离子的能量低,但是却比环丙烯基正离子和环庚三烯基正离子的能量高很多。当空的 p 轨道是共轭环体系的一部分时,会促进碳正离子的稳定,本文的计算结果确证了上述结论。环丙烯基正离子的能量为-90.0 kcal/mol,环庚三烯基正离子的能量为-114.0 kcal/mol。这两个碳正离子的原子均在一个平面且键长分别相等,正电荷平均分散在每个碳原子上。根据休克尔规则, 可以判断出环丙烯基正离子和环庚三烯基正离子均具有芳香性。计算结果也可以确证这一点,环丙烯基正离子的能量要比烯丙基正离子的能量低 35.3 kcal/mol,环庚三烯基正离子的能量要比庚三烯基正离子的能量低 25.0 kcal/mol。之前的理论研究认为环戊二烯基正离子是反芳香性的。然而,本文的计算结果表明环戊二烯基正离子具有非芳香性结构,反芳香性只是一个过渡态。环戊二烯基正离子中的 C−C 键的键长有很大的区别。C2−C3 单键的键长为 1.575 Å, 这要比正常的 Csp3−Csp3键的键长 (1.540 Å) 和 Csp2−Csp2键的键长 (1.470 Å)都长。也就是说环戊二烯基正离子中的 C2−C3 单键很微弱。然而 C1−C2 键的键长和 C3−C4 键的键长为 1.366 Å ,C1−C5 键的键长和 C4−C5 键的键长均为 1.455 Å。这种多样化的键长表明环戊二烯基正离子为了避免形成一个 4π 电子环流(所谓的反芳香体系)而形成一个非常微弱的,较长的 σ 键,最终使得结构发生很大的变化。环戊二烯基正离子的键长并未平均化且正电荷没有平均分散,这样无法形成电子环流,不符合反芳香性的定义。所以,本文认为环戊二烯基正离子是非芳香性的。σ 键的拉长导致环戊二烯基正离子的能量比 1,4-戊二烯基正离子(CH2=CH- CHCH=CH2)的能量高 35.3 kcal/mol 。