高功率光纤激光器分为连续光纤激光器和脉冲光纤激光器。激光器在连续工作方式下,光纤承受的功率密度会随着输出功率和能量的提高而不断增大,导致非线性效应(受激喇曼散射和受激布里渊散射等)、光纤端面损伤等问题的产生,从而限制了平均功率的进一步提高。相比之下,脉冲光纤激光器可以在小的脉冲能量下获得较高的平均功率,即具有更高的靶面密度和光束质量,使加工速率提高 100 多倍。因此,脉冲光纤激光器更适合工业加工的需求,是高功率光纤激光器的发展趋势。
实现脉冲光纤激光器的技术途径主要有调 Q 技术、锁模技术和种子源主振荡功率放大(MOPA)技术。锁模技术可以实现 fs 量级的脉冲输出,且脉冲的峰值功率较高,一般在 MW 量级,但是其输出的脉冲平均功率较低;MOPA 技术可以获得高能量、高功率的脉冲输出,但一般需要在种子源激光器的基础上进行多级放大;调 Q 技术是一种获得高能量短脉冲的有效方法,在调 Q 过程中,增益介质在存储到足够多的能量之前,整个激光器谐振腔保持较高的腔损耗,随后腔损耗迅速降低至一个很小的值,使腔内存储的能量以激光辐射的形式瞬间释放,形成窄脉冲输出。
调 Q 光纤激光器可以获得脉宽为 ns 量级、峰值功率为 kW 量级、脉冲能量为 mJ 量级的脉冲激光。虽然与可以获得焦耳级脉冲能量的固体激光器相比较小,但是较窄的脉冲宽度和较高的峰值功率使其在许多领域具有独特的应用价值,特别是在打标和精密加工领域。因此,研究高功率调 Q 光纤激光器具有重要的实际意义。