造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

边界条件分类

2022/07/16519 作者:佚名
导读:边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay By'=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或洛平(Robin)条件。 总体来说, 第一类边界条件: 给出未知函数在边界上的数值; 第二类边界条件: 给出未知函数在边界外法线的方

边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay By'=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或洛平(Robin)条件。

总体来说,

第一类边界条件:

给出未知函数在边界上的数值;

第二类边界条件:

给出未知函数在边界外法线的方向导数;

第三类边界条件:

给出未知函数在边界上的函数值和外法线的方向导数的线性组合。

对应于comsol,只有两种边界条件:

Dirichlet boundary(第一类边界条件)—在端点,待求变量的值被指定。

Neumann boundary(第二类边界条件)—待求变量边界外法线的方向导数被指定。

再补充点初始条件:

初始条件,是指过程发生的初始状态,也就是未知函数及其对时间的各阶偏导数在初始时刻t=0的值.在有限元中,好多初始条件要预先给定的。不同的场方程对应不同的初始条件。

总之,为了确定泛定方程的解,就必须提供足够的初始条件和边界条件!

诺伊曼边界条件

在数学中,诺伊曼边界条件(Neumann boundary condition) 也被称为常微分方程或偏微分方程的“第二类边界条件”。诺伊曼边界条件指定了微分方程的解在边界处的微分。

在常微分方程情况下,如

在区间[0,1],诺伊曼边界条件有如下形式:

y'(0) = α1y'(1) = α2其中α1和α2是给定的数值。

一个区域上的偏微分方程,如

Δyy= 0(Δ表示拉普拉斯算子,诺伊曼边界条件有如下的形式

这里,ν表示边界处(向外的)法向;f是给定的函数。法向定义为

边界其中∇是梯度,圆点表示内积。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读