造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

铁矿石烧结分解、氧化和还原

2022/07/16222 作者:佚名
导读:烧结过程中的主要分解反应是碳酸盐(CaCO3、MgCO3和FeCO3等)和一些氧化物的分解。碳酸盐的分解压为101.325kPa时,其温度为:CaCO3 910℃,MgCO3 630℃,FeCO3 400℃。因此,在烧结过程中它们是完全可以分解的。如果石灰石粒度较粗,则不但分解时间延长,且不能完全分解并与其他氧化物充分进行矿化,烧结矿中残留的自由CaO,会导致烧结矿的粉化。因此,石灰石粒度要求小于

烧结过程中的主要分解反应是碳酸盐(CaCO3、MgCO3和FeCO3等)和一些氧化物的分解。碳酸盐的分解压为101.325kPa时,其温度为:CaCO3 910℃,MgCO3 630℃,FeCO3 400℃。因此,在烧结过程中它们是完全可以分解的。如果石灰石粒度较粗,则不但分解时间延长,且不能完全分解并与其他氧化物充分进行矿化,烧结矿中残留的自由CaO,会导致烧结矿的粉化。因此,石灰石粒度要求小于3mm。碳酸盐分解为吸热反应,增加石灰石用量一般要相应地增加配碳量。

铁氧化物在烧结过程中,可根据其形态、温度和气相成分,而进行分解、还原或氧化反应。Fe2O3的分解压在1383℃时为20.6kPa(0.21大气压),烧结过程中氧的分压较低(6.8~18.6kPa),故在1300~1350℃(燃烧层)即可发生热分解(6Fe2O3=4Fe3O4 O2)。Fe3O4和FeO的分解压很小,在烧结过程中不可能产生热分解。Fe2O3分解压高,烧结废气中常含少量CO,可在300~400℃开始还原,所以Fe2O3在预热层和燃烧层中即被还原;Fe3O4的分解压低,只有在CO浓度高的气氛下才能被还原,所以还原仅在燃烧层中燃料颗粒附近的温度和CO浓度都较高的区域进行。FeO只有在燃料配比很高(>10%)的条件下才能被还原成部分金属铁。在燃料配比低的条件下,Fe2O3热分解和还原反应相对较少。在烧结矿层中,由于无碳存在,Fe3O4和FeO可部分地被氧化成Fe2O3

非铁元素在烧结过程中的行为 MnO2和Mn2O3的分解压很高(分解压为20.6kPa时的温度分别为460℃和927℃),因此它们在预热层中,就可分解和被还原,生成的Mn3O4与SiO2形成低熔点的Mn2SiO4。FeS2在565℃时开始热分解(2FeS2 = 2FeS S2),但在分解前即可进行氧化(4FeS2 11O2 = 2Fe2O3 8SO2),在565~1383℃,氧化和热分解同时进行,温度更高时氧化产物是Fe3O4;FeS2(FeS)也可被Fe2O3氧化,生成的SO3 可以被CaO吸收生成CaSO4。缩小矿粉粒度,配合合适的燃料量以保持充分的氧化气氛和较高的温度,有利去脱;提高碱度降低去硫率,一般烧结过程可除去90%以上的硫。硫酸盐(BaSO4等)的分解温度较高,去硫率在80%~85%。As2O3易挥发去除,但As2O5却很稳定。PbS和ZnS可被氧化生成PbO和ZnO,熔解在硅酸盐渣相中。故As、Pb、Zn在烧结过程中较难去除,在高燃料配比的条件下,可去除一部分。加少量氯化物(CaCl2等)可生成易挥发的AsCl3、PbCl2和ZnCl2,可除去60%的As,90%的Pb和60%的Zn。K2O、Na2O和P2O5在烧结过程中较难去除。

矿粉的熔融和凝固矿粉熔融前存在固相反应。它是在矿粉被加热到其熔点以下的一定温度时,颗粒表面离子动能增加而引起的迁移、扩散和相互结合成新化合物的反应。固相反应产物2CaO·SiO2出现的温度为500~690℃;CaO·Fe2O3出现的温度为400~600℃;2CaO·Fe2O3为400℃;2FeO·SiO2为970℃。这些反应在预热层和燃烧层可以进行,但由于时间短,不会有很大发展。2CaO·SiO2在高温熔体中可以全部保存,2FeO·SiO2则部分分解,而CaO·Fe2O3和2CaO·Fe2O3则全部分解。固相反应都是放热反应,其反应程度除受温度影响外,还受相互间的接触条件和化学亲和力的影响。在还原、氧化和固相反应的过程中,烧结料中会出现一些低熔点的物质,如2FeO·SiO2(熔点为1205℃)及其共晶混合物(1177~1178℃),CaO·Fe2O3(1216℃),FeO-2CaO·SiO2系共晶混合物(1280℃),CaO·Fe2O3-CaO·2Fe2O3系共晶混合物(1200℃)和CaO·Fe2O3- 2CaO·Fe2O3-Fe3O4系共晶混合物(1180℃)。这些物质首先熔化,并不断熔解其余的物料,改变自身的成分,形成新的熔体。熔体的成分受烧结料组成和还原氧化反应程度等因素的影响,但熔体基本上可以分成硅酸盐体系和铁酸盐体系两大类。烧结矿品位高(即含SiO2低)、碱度高和氧化程度高,有助于铁酸盐熔体的生成;反之,则有助于硅酸盐熔体的形成。熔体冷却凝固后,形成不同结构的烧结矿。在冷却凝固过程中,根据熔体成分的不同,可以结晶出赤铁矿(Fe2O3)、磁铁矿(Fe3O4)、铁酸钙(CaO·Fe2O3和2CaO·Fe2O3)、硅酸钙(2CaO·SiO2和3CaO·SiO2等)和钙铁橄榄石(CaO·FeO·SiO2 )等矿物。在含TiO2和CaF2的烧结矿中,则可形成钙钛矿(CaO·TiO2) 和枪晶石(3CaO·2SiO2·CaF2)。最后凝固的是低熔点的玻璃体,其组成主要是成分复杂的硅酸盐。不同的矿物组成对烧结矿的性能有很大影响。例如,铁酸钙的还原性比钙铁橄榄石好,比铁橄榄石(2FeO·SiO2)更好;2CaO·SiO2在冷却过程中产生晶变(β2CaO·SiO2→γ2CaO·SiO2),发生约10%的体积膨胀,引起烧结矿粉化;非晶态的玻璃体强度较晶态矿物差。凝固过程中,由于体积收缩而产生大小和数量不同的气孔,小而多的气孔有利于提高强度和还原性,大气孔结构不利于改善强度和还原性 。

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读