目前,较为流行的近似最优控制求解方法主要有以下几类:
幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。
将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解。由此寻求非线性HJB方程级数的近似解。
由动态规划得到的一般性偏微分HJB方引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列
其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵
将描述系统的微分方程转化为一系列的代数方程X=MU N。然后,得到TU=V,当T非奇异时,由U=T-1V得到的控制律是一个多项式级数解u(t)=θ(t)U。该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程
经典的有限差分和有限元方法可以用来近似求解非线性HJB方程近年来,这类方法用来近似求取非线性HJB方程的粘性解。
这种方法适用的模型是仿射非线性系统。通过极大值原理假设最优控制律具有如下形式。
其中P(x)为下式所述里卡提方程的解
这样,问题的关键归结于近似求解P(x)。状态相关里卡提方程方法通过在P(x)中引入灵敏度参数变量ε,在ε=o邻域内将P(x)展为幂级数
通过比较幂级数同次项系数将状态相关里卡提方程分解为一组矩阵微分方程序列,由此求得其近似解状态相关里卡提方程方法所设计的近似最优控制律是一种级数形式的状态反馈控制律
该方法对非线性系统构造线性时变序列以及相应的线性二次型时变性能指标,得到线性时变序列的最优反馈控制序列
此方法计算量较大,但是当系统的维数不是很大时,较里卡提方程近似序列方法具有很快的收敛速度,并表现出很好的鲁棒性。
该方法是针对非线性的一次项和高次项可分离的一类非线性系统进行近似最优控制问题的求解,给出了一种逐次逼近的近似求解方法该方法针对由极大值原理导致的两点边值问题,构造近似的等价序列将其转化为一组线性非齐次两点边值问题序列,通过迭代求解一系列的向量微分方程,包括状态向量方程序列和共态向量方程序列,得到原非线性系统近似最优控制问题的解该方法被广泛应用到各类非线性系统,其最大优点是在迭代过程中每次计算的不是矩阵微分或代数方程,而是向量微分或代数方程,计算量大大减少,而且实时性很高。