如图1至图6所示,2016年3月之前的四冲程发动机设置有曲轴箱1、润滑油箱2、凸轮室4、顶杆5、上摇臂室6、汽缸,汽缸顶部设有汽缸盖3。
如图1所示,在发动机处于水平状态下,从正前方看,润滑油箱2垂直于曲轴的截面大致呈U形,曲轴箱1由润滑油箱2包围,曲轴箱箱壁11与润滑油箱箱壁之间围成润滑油箱2的U型腔体,曲轴箱1及润滑油箱2的底部呈下凸的圆弧形,左右两侧边呈外凸的圆弧形。
《一种四冲程发动机定量单向油气润滑系统及方法》的四冲程发动机脉冲油气润滑系统,在曲轴箱1的左右两侧箱壁上各设置有一个前级定量取油孔,即位于曲轴箱1左侧箱壁上的第一前级定量取油孔111和位于曲轴箱1右侧箱壁壁上的第二前级定量取油孔112。在发动机水平放置状态下,这两个前级定量取油孔位于润滑油箱容积中心面的前后向中心线与曲轴箱1的左右两侧箱壁前后向中心线的相交点位置附近,允许有适当偏移,比如在该相交点20毫米以内。而且在发动机水平放置时,两个前级定量取油孔位于润滑油液面上方50毫米高度以内。即使润滑油箱2的形状有所变化,对于前级定量取油孔的位置来说,优选的设计是,在发动机水平放置状态下,前级定量取油孔位于润滑油箱容积中心面与曲轴箱箱壁的相交线上,具体在相交线的哪一个位置,可以根据润滑油箱形状变化做出进一步的选择。
润滑油箱2与曲轴箱1之间通过前级定量取油孔相连通,凸轮室4与上摇臂室6之间由顶杆孔道连通,在汽缸盖3上开设有末级定量通气孔31,末级定量通气孔31与上摇臂室6连通,这样,前级定量取油孔与末级定量通气孔31之间形成了一条单向连通的油气润滑通道。
《一种四冲程发动机定量单向油气润滑系统及方法》的四冲程发动机脉冲油气润滑系统,利用活塞上下运动产生的脉冲气流,吹、吸润滑油箱2中的润滑油,通过控制前级定量取油孔直径D1与末级定量通气孔直径D3,使前级定量取油孔直径D1与末级定量通气孔直径D3满足D1/D3=0.8-1.5,优选满足D1/D3=1-1.2。由于前级定量取油孔直径D1的大小可以控制脉冲气流对润滑油箱2中润滑油的吹吸压力,从而控制了润滑油从润滑油箱2到曲轴箱1的流量,末级定量通气孔直径D3大小的设计在尽量保证机器内的润滑油尽可能少的排出时,也要兼顾到不影响机器功率的发挥。因此,由于前级定量取油孔与末级定量通气孔之间只有唯一的一条单向连通的油气润滑通道,通过前级定量取油孔直径D1与末级定量通气孔直径D3的协同控制,可以精确控制末级定量通气孔31的出口端压力为负的0.01―0.03兆帕,从而精准控制润滑油气供给量,既保证了油气润滑通道经过处各个零部件的充分润滑,也基本上可以保证不会有多余的润滑油气从末级定量通气孔31排出,而且润滑油气从曲轴箱箱壁上前级定量取油孔到汽缸盖上末级定量通气孔31的行进润滑过程中,每一级润滑部件之间只有唯一的油气量孔相通,形成了单向连通的油气润滑通道,不会有多余参与过润滑的润滑油从曲轴箱1或其它腔室再返回润滑油箱2,实现了单向定量润滑。
进一步的,如图5所示,曲轴箱1与凸轮室4间设有中间级定量过油孔41,中间级定量过油孔直径D2≤3D1。中间级定量过油孔41引入了分级控制的理念,在前级定量取油孔直径D1与末级定量通气孔直径D3确定的情况下,通过控制中间级定量过油孔直径D2大小来控制前级定量取油孔到末级定量通气孔之间润滑油气的行进速度和润滑油气的输送量,实现分级精准控制。
上述两个前级定量取油孔的设计,是为了满足任意翻转时前级定量取油孔均能作用,以满足该四冲程发动机定量单向油气润滑系统的正常使用。如图1所示,在发动机处于水平状态时,第一前级定量取油孔111和第二前级定量取油孔112均在起作用。如图2所示,在发动机处于右侧置状态时,主要由第二前级定量取油孔112起作用。如图3所示,在发动机处于左侧置状态时,主要由第一前级定量取油孔111起作用。如图4至图6所示,在发动机处于倒置状态时、在发动机处于后置状态时以及在发动机处于前置状态时,第一前级定量取油孔111和第二前级定量取油孔112均在起作用。
如图1所示,曲轴箱1的左右两侧外箱壁在前级定量取油孔的上下两侧分别设置有挡油筋条113。上下侧两挡油筋条113将前级定量取油孔夹在中间,由于挡油筋条113的隔挡,机器在某种角度翻转时,紧贴前级定量孔所在的箱壁的那一点润滑油也就不会通过前级定量孔流入曲轴箱1了。另外一种选择是,可以在前级定量取油孔的周向均设置有挡油筋条,这样挡油效果更好。
由于润滑油箱容积与发动机排量会有所变化,因此,前级定量取油孔直径D1与润滑油箱容积及四冲程发动机排量之间的关系为D1=K(润滑油箱容积-发动机排量),其中D1的单位为毫米,润滑油箱容积与发动机排量的单位为立方厘米,所述K的取值范围为0.011-0.02,K取值大小的确定与排量相关,一般为排量大取值大,排量小取值小。
最后,将末级定量通气孔31通过连通管32与汽缸连通,这样即使会有部分润滑油气从末级定量通气孔31排出,仅剩的微量废油气也可以通过连通管32直接引入汽缸将其彻底烧掉,降低润滑油消耗率,减少排污,最终达到了定量单向行进润滑的要求,根本没有多余参与过润滑的润滑油从曲轴箱1或其它腔室再返回润滑油箱2。
另外,为了保证满足任意翻转正常使用,还有一个必要条件:即曲轴箱1的设计需实现内壁各面与曲柄旋转空间对应面间距≤2毫米。如图5所示,曲轴箱1设有凸向曲轴曲柄轴向端面的凸起部12,以全面实现曲轴箱内壁与曲柄旋转空间所有对应面间距≤2毫米。这样才能保证,任意工位时,曲轴箱1内都不会有多余空间留存从润滑油箱2进来的润滑油,进入曲轴箱1内定量的润滑油除了润滑曲轴箱1内的零件,剩余的润滑油只能通过中间级定量过油孔41,继续单向行进去润滑凸轮室4。
上述的四冲程发动机脉冲油气润滑系统,是通过控制前前级定量取油孔直径D1与末级定量通气孔直径D3满足D1/D3=0.8-1.5,同时使前级定量取油孔直径D1与润滑油箱容积及发动机排量之间的关系为D1=K(润滑油箱容积-发动机排量),来精准控制润滑油气供给量和润滑油气在油气润滑通道的行进速度,形成定量单向行进润滑的,油气润滑通道由前级定量取油孔到末级定量通气孔方向依次连通曲轴箱1、凸轮室4、顶杆孔道、上摇臂室6,最后将末级定量通气孔31中排出的微量废油气引入汽缸彻底烧掉。
在发动机一定排量和曲轴箱容积一定的情况下,活塞以0.01—0.002秒的频率上下行形成的脉冲气流的压力速度基本稳定,通过改变前级定量取油孔孔径,就决定了脉冲气流对润滑油箱中润滑油的吹吸压力,从而控制了润滑油气从润滑油箱2到曲轴箱1的流量,在上述条件下润滑油气从润滑油箱2到曲轴箱1的流量控制在1.5—2克/千瓦.小时。
曲轴箱1润滑之后,接着润滑凸轮室4,曲轴箱1与凸轮室4间之间的中间级定量过油孔41大小设计满足;中间级定量过油孔直径D2≤3D1,保证运行中的曲轴箱1压力为负的0.003—0.008兆帕,同时控制进入凸轮室4的润滑油量在满足凸轮与正时齿轮润滑外,其余油量基本可满足下一润滑部位,即上摇臂室6的机件润滑正常为度。
上摇臂室6润滑之后,仅剩的微量废油气通过汽缸盖3顶部的末级定量通气孔31引入汽缸,末级定量通气孔31大小的设计在尽量保证机器内的润滑油尽可能少的排出时,也要兼顾到不影响机器功率的发挥,通过控制末级定量通气孔直径,使末级定量通气孔到汽缸之间的油粒行进速度为3—5毫米/秒为佳。
《一种四冲程发动机定量单向油气润滑系统及方法》提供的四冲程发动机定量单向油气润滑系统可使用于各种安装有四冲程发动机的工具,如汽油锯、修枝剪、打草机、割灌机、吹吸风机、草坪机、发电机、水泵、高压清洗机、小型通用发动机等。