硅钢是含硅量在3%左右、其它成分主要是铁的铁硅合金,是电力、电子和军事工业不可缺少的重要软磁合金,亦是产量最大的金属功能材料,主要用作各种电机、发电机和变压器的铁心。硅钢的分类有:热轧硅钢片、冷轧无取向硅钢片、冷轧取向硅钢片。其中,取向硅钢由于生产工艺复杂、制造技术严格被称作当今全球钢铁业的“塔尖产品”。
硅钢在磁场作用下具有显著的取向性:最易磁化的方向是与<001>轴平行的方向。为了获得合适的择优取向,需要所有晶粒的<001>轴都与钢板轧向平行,这样可降低晶粒取向钢的铁损,提高导磁率,增大易磁化方向的磁路,使材料更适用于变电和配电变压器等应用领域。
典型的高磁感取向硅钢生产方法如下:
用转炉(或电炉)炼钢,进行二次精炼及合金化,连铸成板坯,其基本化学成分为Si(2.5~4.5%)、C(0.06~0.10%)、Mn(0.03~0.1%)、S(0.012~0.050%)、Als(0.02~0.05%)、N(0.003~0.012%),有的成分体系还含有Cu、Mo、Sb、B、Bi等元素中的一种或多种,其余为铁及不可避免的杂质元素;板坯在专用高温加热炉内加热到1350℃以上的温度,并进行45分钟以上的保温,使有利夹杂物MnS或AlN充分固溶,然后进行轧制,终轧温度达到950℃以上,进行快速喷水冷却到500℃以下,然后卷取。为便于在随后的常化过程中在硅钢基体内析出细小、弥散的第二相质点,即抑制剂,热轧板常化后,进行酸洗,除去表面氧化铁皮。然后进行冷轧将样品轧到成品厚度,再进行脱碳退火和涂布以MgO为主要成分的退火隔离剂,把钢板中的[C]脱到不影响成品磁性的程度(一般应在30ppm以下)。高温退火过程中,钢板发生二次再结晶、Mg2SiO4底层形成及净化(除去钢中的S、N等对磁性有害的元素)等物理化学变化,获得取向度高、铁损低的高磁感取向硅钢。最后,经过涂布绝缘涂层和拉伸退火,得到商业应用形态的取向硅钢产品。
传统取向硅钢生产方法的显著特点有:
(1)抑制剂从炼钢开始就形成,在其后的各工序,抑制剂都发挥作用,必须对它进行控制与调整;
(2)板坯高温加热,为了抑制剂的充分固溶,加热温度最高达到1400℃,达到了传统加热炉的极限水平,由于加热温度高,烧损大,加热炉需频繁修补,利用率低。同时,能耗高,热轧卷的边裂大,致使冷轧工序生产困难,成材率低,成本高;
(3)此生产工艺技术的关键是控制各阶段钢板的组织、织构,以及抑制剂的行为。
高温取向硅钢生产技术经过半个多世纪的发展,已经非常成熟,但一方面,由于其生产工艺复杂、技术含量高、企业间的技术封锁严重及产品的专用性和总需求量较小等原因,掌握该项技术的钢铁制造商较少;另一方面,由于加热温度高,导致生产性差、成本高等。为了解决这些问题,在长期的生产实践和研究工作中,人们摸索和开发出了一些成功的办法,比如:
(1)板坯低温加热、渗氮方法
板坯在1250℃以下加热,热轧板无边裂,生产性好。抑制剂通过脱碳退火后的渗氮而获得,是一种后天的获得型抑制剂,既可以生产一般取向硅钢产品,又可以生产高磁感取向硅钢产品。
(2)中温取向硅钢生产方法
俄罗斯的新利佩茨克冶金厂、VIZ等厂采用中温取向硅钢生产技术,板坯加热温度1250~1300℃,化学成分中含较高的Cu(0.4~0.7%),以AlN和Cu为抑制剂。该方法的抑制剂与高温法类似,也是一种先天性的抑制剂。但可以完全避免高温加热带来的边裂问题,缺点是只能生产一般取向硅钢。
(3)不含抑制剂成分的制造方法
使材料高度纯化,将Se、S、N、O的含量分别减少至30ppm,从而排除了Se、S、N、O等偏析带来的影响,使高能晶界与其他晶界在移动速度方面差别明显化,且晶界移动速度随材料高度纯化而加大。
如JP3211232、JP4297524等介绍了加Sn的取向硅钢,但是普遍认为Sn只能作为控制AlN的成分出现,且一般控制在0.04%~0.08%,而且加热温度也不发生降低。
(4)控制加热温度的取向硅钢制造方法
众所周知,在传统工艺中存在一些问题,如在再加热过程中,为了充分固溶抑制剂,再加热的温度通常高于普通板坯的加热温度,先将铸坯加热到1350~1390℃,这样将会导致过多地晶粒长大,这些过度长大的晶粒在传统的热轧过程中很难完全破坏,结果导致在最终的二次再结晶不完善,成品存在线晶。如果降低再加热温度将不利于夹杂物充分固溶,不能形成有效的抑制剂,二次再结晶不完善,直接影响材料性能。2007年7月之前主要解决问题的方法是利用控制加热温度的方式,如为克服高温加热技术带来晶粒尺寸不均等问题,开发了高温快速加热等取向硅钢再加热的方法,如JP8246055,JP8260054等所揭示的技术。但是这些方法都没有完全解决热轧板坯存在线晶的现象,而且容易导致抑制剂固溶不充分。
(5)控制热轧的取向硅钢制造方法
板坯热轧的主要目的,其一是为了促使AlN以细小弥散状更快和更均匀析出;其二是为了在热轧过程中发生动态再结晶,并形成一定的再结晶织构;第三是为了使碳化物弥散分布;第四是为了破坏铸造过程中形成的柱状晶。
JP1250637和US4302257,虽然阐述了轧制热轧温度的变化对性能的影响,但是却没有考虑到在热轧工序中提高生产效率,降低能耗,也没有考虑到热轧中间坯厚度对性能的影响。
为有效解决上述问题,《一种高磁感取向硅钢及其生产方法》旨在提供一种高磁感取向硅钢,以满足硅钢发展需求。
此外,《一种高磁感取向硅钢及其生产方法》还提供上述硅钢的生产方法,有效克服传统取向硅钢生产工序存在的能耗高、生产性不好等缺点。