质量惯性积是刚体动力学中一个重要的质量几何性质。刚体中的质量微元 Δmi与这微元的两个直角坐标的乘积对刚体的总和。其数值为:
式中xi、yi为组成刚体的质量微元Δmi(或dm)在x、y轴上的坐标;求和号(或积分号)遍及整个刚体。同样有
惯性积是计算转动惯量数式的一部分。它也出现于对定轴转动刚体轴的动反力计算中。惯性张量是二阶对称张量,它可以完整地刻画刚体绕通过定点 O任一轴的转动惯量的大小。惯性张量的非对角线分量即为各相应的惯性积。惯性椭球在 O点有三根互相垂直的主轴。如果将直角坐标系Oxyz选在这三根主轴上,则全部惯性积得零。