2025-04-11
针对低渗透油藏孔隙尺度小、采收率低的问题,采用宽度为200μm、深度分别为1.8μm和4.1μm的两个矩形通道,结合数字显微摄像技术和微流体测试技术,对岩层孔隙流动进行了模拟,得到了孔隙通道中单相油以及含油率(体积分数)为10%~60%的油水两相流的流动特性.实验结果表明:对于深度为1.8μm和4.1μm的两个矩形通道,单相油流动的摩擦系数低于理论值,并与雷诺数呈线性关系;泊肃叶数小于理论预测值,通道尺度越小,泊肃叶数实验值与理论值的差异越大.油水两相流流动的摩擦系数与雷诺数也满足线性关系,在不同含油率时有的高于理论值,有的低于理论值;泊肃叶数总体随含油率增加而减小,在含油率为20%与60%时出现跳跃式增长,分析表明泊肃叶数随含油率变化是受壁面亲水性的影响.
基于新型水冷球床反应堆,以水和空气为工质,分别在直径为2、5、8mm的玻璃球填充圆管形成多孔介质通道中,对竖直向上气-液两相流动阻力特性进行了实验研究。结果表明,阻力压降随着气液流量的增加而增大,并且与流型存在一定的对应关系;在相同流动条件下,颗粒直径和孔隙率对压降有明显影响。结合实验所得的234组实验点,对两类阻力关系式(分相模型关系式和均相模型关系式)进行了比较和改进。结果表明,基于分相模型的关系式一致性较好,但随着颗粒直径的增加其偏差值增大;现有的基于均相模型关系式预测值与实验值相差较大,而改进的均相模型关系式与实验值吻合较好。
辅助高速摄影仪对正方形小通道内氮气-水两相流向上流动进行可视化观察,对流动特性进行了实验研究,获得了典型的流型图像。采用数字图像处理技术对流型图像进行了处理,检测得到气相的周长、面积,并通过提出的假想圆柱体模型计算和统计得到了截面含气率。将压降实验数据分析结果与典型的分相流、均相流压降模型预测值比较,结果表明,chisholm关系式能较好地预测两相流的压降变化,lee&lee关系式和dukler关系式可较好地预测低表观速度时的两相流压降。
以氮气和水为实验介质,利用高速摄像机对水力直径为1.15mm的矩形小通道内的气液两相垂直向上流动特性进行可视化研究,依次得到泡状流、弹状流、搅拌流和环状流4种典型的流型图像。针对小通道内气泡之间相互无遮掩性的优势,运用图像处理技术对流型图像分形增强,检测气泡边缘并填充后根据提出的气相体积模型,得到两相流动的含气率。结合实验数据,根据分液相reynolds数把流动分为层流区、过渡区和紊流区,并对chisholm关系式进行修正,结果表明:修正后的压降模型能较好地预测本文实验结果。
以空气、水为工质,对进口和出口水平管内气液两相流流过闸阀的局部阻力特性进行了研究。管内直径38mm、阀门通径40mm。根据实验结果,总结出了空气和水两相流体流过闸阀时的局部阻力变化规律,并与前人的结果进行比较,提出了闸阀局部阻力修正系数,计算值和实验符合良好。
通过利用9-26型高压离心风机,对排粉风机在风机叶轮不同转速、不同出口速度场条件下的风机出口两相流浓度进行了测量,测量发现除内侧附近区域外,沿着风机出口朝向外侧的方向固相浓度逐渐增高.测量结果给利用排粉风机出口的固相浓度分布特性来进行含粉气流的浓淡分离提供了参考.
研究了应用射流泵输送油水两相管流时泵对下游管道中流型和压降的影响。实验管线为内径50mm的透明有机玻璃管,管线从入口到分离器长约35m,实验段由一个垂直倒u型管和一个长3m水平管组成。分别给出了不同入口条件下实验管段的流型图和压降图。结果表明:采用射流泵输送油水两相流动,对下游管道流型和油水乳化速度有着显著的影响,但对下游管道内的压降随混合流速和体积份额的变化趋势影响很小。
建立了带浮尘源的同侧上送下回侧送风和异侧上送下回侧送风标准房间的物理模型,采用k-ε湍流模型和欧拉拉格朗日两相流模型模拟了不同粒径浮尘在房间内的轨迹,分析了不同送风形式、送风速度下不同粒径颗粒对气相流动的影响。
利用计算流体动力学技术对用于空调净化领域的高效过滤器(highefficiencyparticulateairfilters,hepa)内的气-固两相流动特性进行数值研究,该高效过滤器由交错排列纤维组成。模拟时,计算不同运行条件下过滤器的压力损失及不同粒径范围过滤器的捕集效率,并将数值计算值和文献中的经验模型计算值进行了比较。结果表明:和其他经验模型比较,过滤器压力损失的数值预测值和实验关联式吻合较好,误差在2%以内,预测结果也表明,随着迎面风速的增加,过滤器压力损失呈线性增加;在过滤器中不同粒径范围的微细颗粒捕集机理也不同,对于本文所研究的过滤器,粒径小于0.2μm时,主要由布朗扩散起作用,粒径大于0.5μm时,惯性碰撞贡献较大,而粒径位于0.2μm~0.5μm之间时,两种机理作用都较弱,因此过滤器的捕集效率在该范围出现最小值。
通过对旋流泵内部流道进行三维造型,利用雷诺时均方程、双方程湍流模型并结合simplec算法对其内部三维固液两相流场和清水单相流场进行了数值计算,得到了固相不同体积浓度、不同流量下的分布规律,并研究了外特性的变化规律。模拟结果表明:固相在叶片工作面分布较多;在叶轮里离后盖板越远,浓度越高;无叶腔分布浓度大于叶轮分布浓度;固相浓度的增加会引起扬程的减小。
引用api520标准附录d中的方法,计算了两相流情况下安全阀所需的泄放面积;计算实例表明,与国内分别计算汽、液相泄放面积再求和的简化方法相比,该法计算的泄放面积更为保险。
为了探究混流式水轮机改造前后转轮泥沙磨损情况,采用固液两相流模型对某电站改造前后的混流式水轮机进行全流道数值模拟,分析不同工况下转轮叶片表面泥沙分布,转轮叶片表面固液两相速度差,以及水轮机效率。结果表明:小流量工况下泥沙磨损最严重;水轮机改造后,叶片表面泥沙体积分数下降,固液两相速度差减少,泥沙磨损减弱,水轮机效率较改造前提升了5.5%。该研究可为水轮机改造提供一定的参考。
带内锥的扩散式分离器内两相流动的数值模拟——对于一种带内锥的切向进口扩散式方形分离器,利用考虑各向异性的雷诺应力湍流模型和颗粒随机轨道模型对其内部的两相流动情况进行了数值模拟,分析了其内部不同截面高度的气相流场的轴向、切向和径向速度分布,计算...
两相流中相积存造成多元混合制冷剂浓度变化分析——因多相流动中汽液速度差而造成相积存(holdup)是深冷混合工质节流制冷系统中混合物浓度偏析的一个重要因素。建立了因相积存造成浓度变化的计算模型,采用palmer对sesg~一brill—moody关联式的修正式,详细考察...
针对污垢沉积而导致高炉冷却壁传热效率降低的疑难问题,通过在冷却水管内加入固相颗粒以形成液固两相流,从而改变两相流体对冷却水管的传热和抗垢性能。在不同固相体积分数下进行了冷却水管内液固两相流动的传热和抗垢性能研究。研究结果表明,由于固相颗粒的扰动和剪切效应,不仅可以增大冷却水管传热系数和强化传热效果,而且增强了抗污垢能力,延长了设备的高效运行时间,实现冷却壁的长期高效运行。
针对高炉冷却壁管内污垢沉积而导致传热效率低的问题,提出在高炉冷却壁管内加入固相颗粒以形成液固两相流,在防止污垢的沉积及清洗污垢的同时,增加流体的扰动强化管内对流传热。对液固两相流和单相流的传热性能进行了对比实验。结果表明,由于固相颗粒的扰动和剪切效应,不仅可以强化管内传热,而且也可以在线清洗管内污垢,在流速为2m/s,固相体积分数为3.5%~5.0%、固相粒径为2~3mm的范围内,与单相流相比,液固两相流的传热系数提高了20%~45%。实验结果为液固两相流的工业应用提供了基础。
为了研究泥沙颗粒对冲击式水轮机喷嘴内的流动特性,建立了喷嘴射流的三维数学模型。利用流体分析软件fluent,首先对连续相选用标准k??湍流模型进行计算,再选用离散模型进行固液两相流耦合计算。分析在泥沙颗粒和水流的双重作用下,对喷嘴壁面冲蚀磨损影响。分析得出:泥沙颗粒在喷嘴内部流动特性呈现非对称性特性,影响射流的运动特性,进而影响喷嘴各部位的冲蚀磨损程度,喷嘴下部磨损比上部严重。
氧煤燃烧器内湍流气固两相流动数值模拟——借助fluentcfd软件平台,以套筒式燃烧器为研究对象,根据其结构参数,利用数值计算程序对高炉燃烧器内的湍流气同两相流动、传热和燃烧进行了数值模拟。计算结果描绘出了氧煤燃烧器内的两相流场、温度场、挥发分浓度场...
建立了高炉冷却壁三维物理模型。采用大型cfd软件flunt6.8中的欧拉多相流模型,对高炉冷却壁冷却水管内的液固两相流三维流动和污垢清洗特性进行了数值模拟研究。分析了流体的流速、固体颗粒的粒径、体积分数对流体的流动、清洗强度及清洗均匀的影响。结果表明:流体的湍流强度、壁面污垢清洗强度和压力降均随流速、颗粒粒径和体积分数的增加而增加;液固流态化清洗防垢除垢效果取决于流速、液固颗粒粒径和体积分数的合理组合;综合考虑节水节能及污垢清洗的均匀性,高炉冷却壁的最佳流速为2.0~2.5m/s,固相颗粒粒径为3~4mm,体积分数为5%~8%。研究结果为高炉冷却壁液固流态化污垢在线清洗的工业应用提供了理论基础。
在较宽的实验参数范围内(系统压力p=8~15mpa,质量流速g=800~1800kg·m~(-2)·s~(-1),壁面热流密度q_w=200~950kw·m~(-2))对一立式螺旋管内(管内径为10mm,螺旋直径为300mm,节距为50mm)汽水两相流动沸腾干涸特性进行了实验研究。通过研究,获得了干涸发生时螺旋管圈壁温的分布特征以及压力、质量流速和壁面热流密度这三个参数对临界干度的影响规律。同时在实验数据的基础上,提出了一个适用于计算螺旋管内高压高含汽率工况下汽水两相流临界干度的经验关系式。
通过对宽高比为0.05的矩形通道内两相流动阻力特性的实验研究结果,以及与现有经典公式的对比分析结果表明,现有公式在预测较小宽高比的矩形通道内阻力特性时偏差较大。引入了能够反映小通道对气泡生长的限制特性无量纲nconf,用于对小宽高比矩形通道阻力特性的预测,并采用lockhart-martinelli方法拟合了c系数预测关系式。预测结果与实验数据比较,发现95%的实验数据与预测值相对偏差在±15%以内。
常压下,以空气和水为工质,对宽高比不同的两个矩形通道内两相流动摩擦阻力特性进行了研究,并对常规通道和微小通道内两相压降的计算模型进行了验证和评价。结果表明:传统的常规通道经验关系式并不适用于窄矩形通道中的压降计算;基于微小通道的计算方法中,lee-lee模型与实验值符合程度较好,但在一定的参数范围内仍存在较大误差。提出基于chen模型的chisholmc系数方法的修正关系式,式中综合考虑了矩形通道宽高比、全液相雷诺数和l-m参数对chisholmc系数的影响,修正关系式与实验值符合较好。
对矩形窄缝通道内高压两相摩擦阻力特性开展实验研究,分析摇摆运动对矩形窄缝内两相摩擦阻力的影响。结果表明:摇摆运动条件下,两相摩擦阻力会随着摇摆运动而呈现近似正弦的波动,两相摩擦阻力波动时均值与静止条件下的相等;摇摆运动引起的摩擦阻力相对变化量随着全液相雷诺数、含汽率、摇摆周期的增大而减小,随着摇摆幅值的增大而增大;摩擦阻力相对变化量与最大摇摆角加速度没有明显单调关系。提出用于计算摩擦阻力相对变化量的经验关系式。
采用窄缝矩形通道实验本体对饱和沸腾两相流动阻力特性进行实验研究。实验结果表明:现有经典公式以及采用空气-水、有机冷却剂获得的预测方法在预测窄缝矩形通道内阻力特性时偏差较大;无量纲nconf数可以作为窄缝矩形通道对阻力特性的影响参数之一,用于窄缝矩形通道阻力特性的预测;以chisholm的b系数方法为基础获得的窄缝矩形通道饱和两相阻力预测关系式预测结果与实验数据的偏差在±10%以内。
矩形窄通道广泛应用于紧凑式换热器设计中,其内空气-水两相流动摩擦阻力受简谐摇摆运动影响而与稳定状态不同。笔者通过实验研究了摇摆运动条件下矩形窄通道内绝热两相流摩擦压降特性。结果表明:层流区(分液相雷诺数rel1400)摩擦压降没有明显的周期性波动。lee-lee模型能较好地用于摇摆条件下平均摩擦压降的预测,但不能用于周期性变化摩擦压降的动态预测。通过分析大量实验数据的变化规律,基于奇斯霍姆c(chisholm)关系式,拟合得到了摇摆条件下瞬时摩擦压降经验关系式,其预测值与实验值有较好的一致性。
职位:土建施工员
擅长专业:土建 安装 装饰 市政 园林
文辑推荐
知识推荐
百科推荐