选择特殊符号
选择搜索类型
请输入搜索
Na2O-CaO-SiO2-P2O5系统内有些组分的玻璃(如商品名为45S5 的玻璃)植入生物体内后能够与自然骨牢固地结合在一起,在体液环境中,从其表面溶出Na ,玻璃表面就生成富SiO2凝胶层。生物玻璃溶解形成表面带负电荷的Si-OH,与不同种类的蛋白质通过氢键和离子胺键(-Si-O- H3N -)结合形成高密度的蛋白吸附,硅溶胶层和在其表面形成的碳酸羟基磷灰石(Ca10(PO4,CO3)6(OH)2,hydroxyl-carbonate-apatite,HCA)层具有高表面积,适合吸附大量的生物分子,从而促进细胞外响应。相比于带较低负电荷量的硅溶胶层,HCA 层表面能吸附更多的生物分子。
制备思路:他们在普通的Na2O-CaO-SiO2玻璃系统中加入6wt%的P2O5,使得材料在元素成分上与自然人体骨骼有所接近,这种材料不仅对人体无害,而且由于P2O5的加入,增加了生物活性。他们把这种材料叫做“生物玻璃”(Bioglass),从而揭开了玻璃和玻璃陶瓷材料作为生物体材料的序幕。
优点:对人体无害,与骨组织亲和性也好,而且还能够与周围的骨骼组织牢固的结合在一起。
应用情况:它的一些产品如牙科所用的ERMI和PerioGLAS粉、中耳骨、骨骼损伤修补等已进入市场或在临床应用中。
缺点:力学性能不够理想。不能直接应用于人体的承受载荷的部位,而主要用于骨填充材料和生物涂层。
Hench在对生物玻璃的大量溶液实验积累了大量数据后,总结出生物玻璃在人体溶液中发生五步表面反应。
(A)玻璃中Na 和K 离子等与溶液中H 以及H3O 迅速交换,Si-O-Na H OH-→Si-OH Na OH-
(B)Si-O-Si键被溶解打断,在界面处形成许多Si-OH;
(C)Si-OH的聚合反应在玻璃表面形成一富SiO2的、多孔胶体层
Si-OH OH-Si→Si-O-Si H2O
(D)Ca2 和PO43-或来源于玻璃体内或来源于溶液中,在富SiO2胶体层上聚集形成CaO-P2O5无定形相层;
(E)随着OH-和CO32-从溶液中引进,CaO-P2O5无定形相层将转变成含碳的羟基磷灰石(HCA)多晶体。
开片玻璃是按需要的规格裁好的规格,整箱玻璃是没有裁割的玻璃。
玻璃棉 玻璃棉属于玻璃纤维中的一个类别,是一种人造无机纤维。玻璃棉是将熔融玻璃纤维化,形成棉状的材料,化学成分属玻璃类,是一种无机质纤维 . 具有成型好、体积密度小、热导率彽、保温绝热、吸音性能好、耐...
有机玻璃是一种通俗的名称,这种高分子透明材料的化学名称叫聚甲基丙烯酸甲酯,是由甲基丙烯酸甲酯聚合而成的。 与普通玻璃的区别: ①高度透明性。有机玻璃是...
两种机制协同作用的结果
(A)一方面生物玻璃溶解导致局部硅离子浓度升高,从而促进成骨细胞新陈代谢的细胞内部响应;
(B)另一方面,各种纤维,随着Ca2 及P从玻璃中溶出,并在骨胶原纤维周围以羟基磷灰石晶体的形态析 出,生物活性玻璃与活骨二者就能自然地结合在一起了。2100433B
水解度对溶胶-凝胶生物玻璃生物活性的影响
为了获得具有较高生物活性和良好生物矿化性能的生物活性材料,以正硅酸乙酯(TEOS)及磷酸三乙酯(TEP)为前驱体,硝酸钙(CN)为添加剂,盐酸为催化剂,在不同水与醇盐物质的量比(R)条件下,采用溶胶-凝胶法制备了CaO-P2O5-SiO2系统生物活性玻璃。利用生物活性材料的体外评价方法及FTIR、XRD、SEM测试技术对样品的结构和生物活性进行了分析研究。结果表明:经模拟体液(SBF)浸泡后,随着水解度的增大,其表面羟基磷灰石层的形成能力逐渐减弱。
生物活性玻璃骨修复支架材料的研究进展
生物活性玻璃由于良好的生物活性、生物相容性、无细胞毒性、能促进骨及软组织的再生,使其成为一类性能优良的骨缺损修复及移植材料,但是由于玻璃材料较差的机械强度和本质的脆性,使其只能应用于非承载骨方面的修复与移植。为改善生物活性玻璃材料的机械性能,部分学者通过制备多孔支架结构、制备复合材料、对玻璃进行微晶化处理、在玻璃中引入氮元素等方法对生物玻璃进行了强化。本文从生物活性玻璃的结构与成分、制备、作用机制、性能、临床应用等方面对生物活性玻璃骨修复支架材料的研究进展作一综述。
溶胶-凝胶生物活性玻璃具有较熔融法制备的45S5系列生物活性玻璃更高的生物活性。体外实验表明,在37℃的模拟生理溶液中8h即可在材料表面形成一层具有一定结晶度的碳酸羟基磷灰石,而45S5生物活性玻璃则需要24h左右的时问。此外,相比较熔融法制备的生物活性玻璃而言,溶胶凝胶生物活性玻璃具有以下优点:
①通过溶-凝胶工艺制备生物活性玻璃的过程基本上是在室温下进行,后续的热处理温度在600~700℃,这要比熔融法(1350~1400℃)制备生物活性玻璃低得多,在工艺上易于操作。
②化学成分的均匀性可达分子级别。通过将溶液充分混合,可以使溶液在大约0.5 nm的尺度内达到化学均匀,这同熔融法使用的微米级粉末原料的混合均匀度相比,提高104~105倍。
③高化学纯度。溶胶-凝胶生物活性玻璃制备采用高纯度化学试剂为原料,还可采用一些进一步纯化原料的工艺,从而保证了所得材料的纯度。
④可以对材料的组成和分子结构进行设计和剪裁而赋予材料特定的理化和生物学特性,满足特定部位的组织修复需要。
⑤溶胶-凝胶生物活性玻璃具有纳米级微孔、巨大的比表面积、较高的化学活性和吸附特性,这些性质对于制备组织修复材料具有重要意义。如通过复合、表面接枝、生物组装与骨修复有关的蛋白和生长因子等,使材料具有更好的组织修复功能。
⑥利用溶胶-凝胶法适合于制备超细粉体、薄膜、涂层、纤维等多种形式的生物活性玻璃材料,利用熔融法则较难实现。
溶胶-凝胶生物活性玻璃的化学组成不同于熔融法制备的45S5系列生物活性玻璃。相对于后者的四元系统而言,溶胶-凝胶生物活性玻璃组成中去掉了Na2O组分,成为CaO-SiO2-P2O5三元系统。此外,溶胶-凝胶生物活性玻璃组成中的SiO2含量的上限比45S5生物活性玻璃体系要高,材料组成中SiO2摩尔含量一旦超过60%,材料则会丧失生物活性。这是由于随着SiO2含量增高,玻璃硅氧网络的连接程度越高,结构越牢固,材料与生理溶液发生离子交换以及材料结构中的离子扩散越困难,在生理环境中难以在材料表面形成碳酸羟基磷灰石层。而溶胶-凝胶生物活性玻璃组成中的SiO2摩尔含量在高达80%的情况下仍可使材料保持一定的生物活性,由于溶胶-凝胶生物活性玻璃的特殊制备工艺而导致玻璃网络结构不同于传统熔融法制备的生物活性玻璃,如结构相对比较疏松、网络中断点数远远高于熔融玻璃,结构中含有大量的OH-离子。同时,由于材料结构中的纳米微孔使其具有巨大的比表面积。这些结构特性对于提高材料的生物活性具有重要意义。
A.W生物活性微晶玻璃属于五元系统微晶玻璃,其主晶相为氧氟磷灰石,氟磷灰石微晶有助于提高其生物活眭;而大量随机取向、均匀分布的针状硅灰石晶体则有利于提高材料的机械强度和可切削加工性能。A·W微晶玻璃在模拟生理溶液(SBF)中反应7天后表面可被羟基磷灰石层所覆盖,其表面羟基磷灰石层(HA)的形成机理见图1。
A·W微晶玻璃表面在SBF溶液中形成羟基磷灰石层(HA)是由于材料的玻璃相中Ca2 和HSiO3-离子溶出,它们对于HA的形成具有重要作用。前者使得溶液的离了浓度相对HA达到过饱和,促进HA析出;后者则为HA析出提供了有利的成核位。此外,由于材料中的玻璃相和口硅灰石微晶相的溶解,使材料中的氧氟磷灰石微晶相残留于材料中,形成凹凸不平的粗糙表面,也有利于HA的晶核形成。