选择特殊符号
选择搜索类型
请输入搜索
1.内部含Flash存储器
因此在系统的开发过程中可以十分容易进行程序的修改,这就大大缩短了系统的开发周期。同时,在系统工作过程中,能有效地保存一些数据信息,即使外界电源损坏也不影响到信息的保存。
89系列单片机的引脚是和80C51一样的,所以,当用89系列单片机取代80C51时,可以直接进行代换。这时,不管采用40引脚亦或44引脚的产品,只要用相同引脚的89系列单片机取代80C51的单片机即可。
89系列单片机采用静态时钟方式,所以可以节省电能,这对于降低便携式产品的功耗十分有用。
一般的OTP产品,一旦错误编程就成了废品。而89系列单片机内部采用了Flash存储器,所以,错误编程之后仍可以重新编程,直到正确为止,故不存在废品。
用89系列单片机设计的系统,可以反复进行系统试验;每次试验可以编入不同的程序,这样可以保证用户的系统设计达到最优。而且随用户的需要和发展,还可以进行修改,使系统不断能追随用户的最新要求。
1. 8031CPU
2. 振荡电路
3. 总线控制部件
4. 中断控制部件
5. 片内Flash存储器
6. 片内RAM
7. 并行I/O接口
8. 定时器
9. 串行I/O接口
ATMEL 89系列 51单片机的应用区域
目前,ATMEL 51已被广泛用于:
· 打印机控制板
· 智能电表
· LED控制屏
· 医疗设备
89s51单片机
AT89S51是关国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4k bytes的可系统编程的Flash只读
程序存储器,器件采用 ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序
存储器既可在线编程(ISP)也可)IJ传统方法进行编程及通用8位微处理器于单片芯片, ATMEL公司的功能强大,低价
位AT89S51单片机可为您提供许多高性价比的应川场合,可灵活应用于各种控制领域。
卞要性能参数:
·与MCS-51产品指令系统完全兼容
·4k字节在系统编程(ISP) Flash闪速存储器
·1000次擦写周期
.4. 0-5. 5V的工作电压范围
·全静态工作模式:OHz-33MHz
·三级程序加密锁
·128X8字节内部RAM
.32个可编程I/0口线
·2个16位定时/计数器
·6个中断源
·全双工串行Lh1RT通道
·低功耗空闲和掉电模式
.中断可从空闲模唤醒系统
·看门狗(WDT)及双数据指针
·掉电标识和快速编程特性
·灵活的在系统编程(iSP一字节或页写模式)
AT89S51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM, 32个I/O口线,看门狗(WDT ),两个
数据指针,两个16位定时/计数器,一个5 向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至OHz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止cPu的工作,但允许RAM,定时/计数器,串行通信口及,中断系统继续工作。掉电方式保存RAM 中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
加减一加法器,通过P1口输入一个八位无符号数,P2口输入另
#include<reg51.h>#define uchar unsigned charuchar num,time,limit=2;sbit led1=P1^0;sbit key1=P2...
1、查询方式:#include<reg51.h>main(){ unsigned char dat; TMOD=0x20; TH1=TL1=0xfd; SCON=0...
89C51单片机论文
89C51单片机论文 摘要:为了方便初学者使用单片机的各种片内资源以及 一些常用的外围扩展芯片,设计开发了基于 51系列单片机 的系统板。同时,该板还可做为学习各种仿真器所需的目标 板。 关键词: 89c51 单片机; tlc 2543 ; tlc5615 the development and application based on 51 series mcu system board li li,shao xinhui (changcheng institute of metrology&measurement,avic,beijing100095,china) abstract:in order to facilitate the beginner to use all kinds of microcontroller chip internal resources
基于51单片机电子时钟设计
基于 51单片机的电子时钟设计 摘要 本电子时钟以 STC89C52单片机作为主控芯片,采用 DS12C887时钟芯片, 使用 1602液晶作为显示输出。该时钟走时精确,具有闹钟设置,以及可同时显 示时间、日期等多种功能。本文将详细介绍该电子时钟涉及到的一些基本原理, 从硬件和软件两方面进行分析。 【关键词】 STC89C52单片机 DS12C887时钟芯片 1602液晶 蜂鸣器 目 录 一、绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 1.1 电子时钟功能⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 1.2 设计方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 二、硬件设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 2.1 51单片机部分设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 2.2 USB 供电电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 2.3 串行通信电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6
同样的一段程序,在各个单片机厂家的硬件上运行的结果都是一样的,如ATMEL的89C51(已经停产)、89S51, PHILIPS,和WINBOND等,我们常说的已经停产的89C51指的是ATMEL公司的 AT89C51单片机,同时是在原基础上增强了许多特性,如时钟,更优秀的是由Flash(程序存储器的内容至少可以改写1000次)存储器取代了原来的ROM(一次性写入),AT89C51的性能相对于8051已经算是非常优越的了。
89S51相对于89C51增加的新功能包括:
-- 新增加很多功能,性能有了较大提升,价格基本不变,甚至比89C51更低。
-- ISP在线编程功能,这个功能的优势在于改写单片机存储器内的程序不需要把芯片从工作环境中剥离。是一个强大易用的功能。
-- 最高工作频率为33MHz,大家都知道89C51的极限工作频率是24M,就是说S51具有更高工作频率,从而具有了更快的计算速度。
-- 具有双工UART串行通道。
-- 内部集成看门狗计时器,不再需要像89C51那样外接看门狗计时器单元电路。
-- 双数据指示器。
-- 电源关闭标识。
-- 全新的加密算法,这使得对于89S51的盗版变为不可能,程序的保密性大大加强,这样就可以有效的保护知识产权不被侵犯。
-- 兼容性方面:向下完全兼容51全部字系列产品。比如8051、89C51等等早期MCS-51兼容产品。也就是说所有教科书、网络教程上的程序(不论教科书上采用的单片机是8051还是89C51还是MCS-51等等),在89S51上一样可以照常运行,这就是所谓的向下兼容。
第1章 51单片机入门基础
1.1 51单片机的发展与应用领域 1
1.1.1 发展阶段 1
1.1.2 应用领域 2
1.2 51单片机产品兼容系列 3
1.2.1 Intel公司产品系列 3
1.2.2 Atmel公司产品系列 4
1.2.3 Philips公司产品系列 6
1.3 51单片机的硬件结构 7
1.3.1 引脚及其功能 7
1.3.2 内部结构 9
1.4 51单片机工作方式和指令系统 29
1.4.1 单片机的工作方式 29
1.4.2 单片机指令系统简介 34
1.4.3 单片机的寻址方式 34
1.4.4 单片机的指令格式与符号 37
1.5 分析与总结 54
第2章 51单片机开发的常用单元
2.1 单片机的键盘输入单元 55
2.1.1 行列式键盘 55
2.1.2 键识别方法 56
2.1.3 键识别法举例 56
2.1.4 程序代码与注释 60
2.2 单片机数码显示单元 61
2.2.1 如何驱动8段数码管 61
2.2.2 8段数码管动态显示举例 62
2.2.3 程序代码与注释 64
2.3 单片机液晶显示单元 65
2.3.1 液晶模块 65
2.3.2 液晶模块的电源设计 67
2.3.3 如何显示液晶模块 68
2.3.4 液晶显示模块举例 70
2.3.5 程序代码与注释 71
2.4 单片机串行通信单元 78
2.4.1 单片机串行通信的原理 78
2.4.2 单片机串行通信举例 81
2.4.3 程序代码与注释 83
2.5 数学运算 84
2.5.1 限幅滤波算法 85
2.5.2 中值滤波算法 85
2.5.3 算术平均滤波算法 86
2.5.4 加权平均滤波算法 86
2.5.5 滑动平均滤波算法 87
第3章 Keil 8051 C编译器
3.1 Keil编译器简介 88
3.2 如何使用Keil开发 89
3.2.1 建立工程 90
3.2.2 工程的设置 92
3.2.3 编译与连接 95
3.3 dScope for Windows的使用 95
3.3.1 如何启动 95
3.3.2 如何调试 97
3.3.3 调试窗口 98
第4章 单片机应用系统开发流程
4.1 单片机系统设计分析 101
4.2 单片机软件开发流程 103
4.3 单片机硬件开发流程 109
4.4 分析与总结 112
第5章 实时日历时钟系统设计实例
5.1 实例说明 113
5.2 设计思路分析 115
5.2.1 日历时钟芯片SD2000A 115
5.2.2 电源电路设计 116
5.3 硬件电路设计 117
5.4 软件设计 118
5.4.1 接口时序与操作指令 118
5.4.2 寄存器 120
5.4.3 程序代码说明 124
5.5 分析与总结 129
第6章 网络远程监控与采集系统设计实例
6.1 实例功能说明 130
6.2 Keil RTX51 Tiny介绍 130
6.2.1 RTX51的概述 131
6.2.2 系统要求和任务定义 134
6.2.3 建立RTX51 Tiny应用程序 137
6.2.4 RTX51 Tiny系统函数详解 139
6.2.5 RTX51 Tiny系统调试 145
6.3 系统设计思路 146
6.3.1 远程监控与采集连接图 146
6.3.2 Modbus协议简介 146
6.3.3 传输方式 148
6.3.4 协议内容 150
6.4 硬件电路设计 152
6.4.1 总体硬件框图 152
6.4.2 单片机电路设计 152
6.4.3 从设备地址配置电路设计 153
6.4.4 485接口设计 154
6.4.5 状态量采集电路 155
6.4.6 模拟量采集电路 155
6.5 软件设计与代码分析 157
6.5.1 软件流程 158
6.5.2 初始化任务 159
6.5.3 定时采集任务 159
6.5.4 测试帧任务 160
6.5.5 轮询处理任务 161
6.5.6 状态量采集子程序 162
6.5.7 模拟量采集子程序 162
6.5.8 485发送、接收子程序 163
6.5.9 CRC校验 164
6.5.10 串口发送接收模块 165
6.6 分析与总结 168
第7章 工厂环境智能监测系统设计实例
7.1 系统功能说明 169
7.2 系统整体设计方案 170
7.3 硬件设计 171
7.3.1 微控制器模块 171
7.3.2 温度测量模块 174
7.3.3 湿度测量模块 175
7.3.4 LCD显示模块 177
7.3.5 通信模块 179
7.4 软件设计 181
7.4.1 温度测量软件 181
7.4.2 湿度测量软件 184
7.4.3 LCD显示软件 185
7.5 分析与总结 187
第8章 电热水器控制系统设计实例
8.1 系统功能说明 188
8.2 系统整体设计方案 189
8.3 硬件设计 191
8.3.1 微控制器模块 191
8.3.2 温度测量 192
8.3.3 实时时钟 195
8.3.4 看门狗复位电路 196
8.3.5 LED显示电路 198
8.4 软件设计 199
8.4.1 模数转换软件设计 199
8.4.2 实时时钟软件设计 202
8.4.3 LED显示软件设计 205
8.5 分析与总结 208
第9章 无线智能抄表系统设计实例
9.1 系统功能说明 209
9.2 系统整体设计方案 210
9.3 硬件设计 211
9.3.1 楼栋集中器硬件结构 211
9.3.2 微控制器模块 211
9.3.3 存储模块 212
9.3.4 人机接口模块 214
9.3.5 抄表接口模块 217
9.3.6 无线模块 218
9.4 软件设计 222
9.4.1 楼栋集中器系统软件流程 222
9.4.2 SPI与UART转换 224
9.4.3 中断程序 226
9.4.4 FM3130的读写 227
9.4.5 键盘输入 230
9.4.6 LCD显示 232
9.5 分析与总结 235
第10章 汽车行驶状态记录仪系统设计
10.1 实例说明 237
10.1.1 功能和技术指标 237
10.1.2 面板介绍和使用方法 238
10.2 设计思路分析 239
10.2.1 获取行驶状态信息 239
10.2.2 系统总体结构 239
10.3 硬件设计 240
10.3.1 记录仪的供电 240
10.3.2 信号采集模块 242
10.3.3 单片机模块 243
10.3.4 可编程逻辑器件 245
10.3.5 日历时钟芯片 248
10.3.6 液晶显示模块LCD 252
10.3.7 信息的存储 254
10.4 软件设计 256
10.4.1 软件流程 256
10.4.2 中断子程序 257
10.4.3 获取状态信息 258
10.4.4 时间信息的设置和获取 259
10.4.5 键盘输入 260
10.4.6 液晶显示 261
10.4.7 IC卡操作 264
10.5 分析与总结 267
第11章 RS485-CAN智能嵌入式网关设计实例
11.1 系统功能说明 268
11.2 系统整体设计方案 269
11.3 硬件设计 270
11.3.1 RS485-CAN智能嵌入式网关硬件结构 270
11.3.2 微控制器模块 271
11.3.3 CAN接口模块 272
11.3.4 RS485接口模块 277
11.3.5 存储模块 278
11.4 软件设计 279
11.4.1 CAN接口软件设计 279
11.4.2 RS485接口软件设计 287
11.4.3 AT93C46存储器读写 290
11.4.4 参数配置 292
11.5 分析与总结 292
附录A C与汇编语言混合编程 294
2015年8月24日-全球微控制器(MCU)及触控解决方案领域的领导者 Atmel ®公司(NASDAQ:ATML)今日宣布将与英特尔公司合作,推出更加安全的物联网(IoT)应用。通过此次合作,Atmel将在所有Atmel SmartConnect无线解决方案中支持英特尔增强隐私身份(Intel® EPID)技术。随着物联网市场的迅猛发展,智能联网设备数量不断增加,在物联网节点与云之间实现相互身份验证,提升云部署的安全性,变得日益重要。
到2020年,全球联网设备数量将达到数百亿台。为了在边缘节点与云之间达成无缝连接,安全成为其中一项关键因素。Atmel也提供了完整的物联网解决方案,整合了Atmel|SMART微控制器(MCU),支持Wi-Fi、802.15.4和蓝牙的Atmel SmartConnect无线技术以及Atmel的安全产品。与英特尔的携手合作,使得采用Atmel无线解决方案的开发者可以在自己的解决方案当中应用值得信任的英特尔EPID身份识别标准。
Atmel公司副总裁兼无线解决方案部门总经理Kaivan Karimi表示:“英特尔EPID技术的应用,为物联网设计者提供了一个真正无缝的边缘节点对云物联网平台。该平台具有值得信赖的安全性能,并且拥有Atmel广泛的物联网产品组合。Atmel的SmartConnect无线和物联网解决方案从现在起可以支持英特尔EPID技术,该技术的安全性已经在过去5年得到了充分验证。”
英特尔EPID是一项用于身份验证和隐私保护的ISO标准,该标准自2011年以来一直运用于英特尔平台。这项技术能够提供硬件可信根,并兼容公钥基础设施(PKI)。采用英特尔EPID技术,设备身份将可得到验证,并在经过验证的设备之间建立安全的通信链路。此外,还可在避免暴露具体平台身份的条件下确定设备组成员身份,再添一层安全保护。并且,英特尔EPID技术可以动态分配取消单个组成员身份,且符合内容和数据保护协议对保护密钥传送的最新要求。
英特尔公司物联网安全部门总经理LoriWigle表示:“随着物联网生态系统的迅猛发展,安全已成为关键要素。英特尔EPID是一项经过验证的安全技术,可为物联网这个新市场上的数十亿台设备提供通用的安全基础。通过英特尔EPID技术,Amtel将能提供更加安全、无缝的物联网平台。”
更多信息
Atmel 物联网解决方案: