选择特殊符号
选择搜索类型
请输入搜索
光纤连接ONU主要有两种方式,一种是点对点形式拓扑(Point to Point; P2P),从中心局到每个用户都用一根光纤;另外一种是使用点对多点形式拓扑方式(Point to Multi-Point; P2MP)的无源光网络(Passive Optical Network; PON),其拓扑结构如图2所示。对于具有N个终端用户的距离为M km的无保护FTTx系统,如果采用点到点的方案,需要2N个光收发器和NM km的光纤。但如果采用点到多点的方案,则需要N十1个光收发器、一个或多个(视N的大小)光分路器、和大约M km的光纤,在这一点上,采用点到多点的方案,大大地降低了光收发器的数量和光纤用量,并降低了中心局所需的机架空间,有着明显的成本优势。
点对点直接光纤连接具有容易管理、没有复杂的上行同步技术和终端自动识别等优点。另外上行的全部带宽可被一个终端所用,这非常有利于带宽的扩展。但是这些优点并不能抵消它在器件和光纤成本方面的劣势。
Ethernet + Media Converter就是一种过渡性的点对点FTTH方案,此种方案使用媒体转换器(Media Converter;MC)方式将电信号转换成光信号进行长距离的传输。其中MC是一个单纯的光电/电光转换器,它并不对信号包做加工,因此成本低廉。这种方案的好处是对于已有的电的Ethernet设备只需要加上MC即可。MC方式的拓扑结构如图3所示。对于目前已经普及的100 Mbps Ethernet网络而言,100 Mbps的速率也可满足接入网的需求,不必更换支持光纤传输的网卡,只需要加上MC,这样用户可以减少升级的成本,是点对点FTTH方案过渡期间网络的解决方案。由于其技术架构相当简单、便宜并直接结合以太网络而一度成为日本FTTH的主流,但在2004 OFC会议中,NTT宣称将从现在起日本FTTH标案将采取点对多点(Point to Multi-Point, P2MP)架构的PON网络模式,势必将影响MC的未来。
在光接人网中,如果光配线网(ODN)全部由无源器件组成,不包括任何有源节点,则这种光接人网就是PON。PON的架构主要是将从光纤线路终端设备OLT下行的光信号,通过一根光纤经由无源器件Splitter(光分路器),将光信号分路广播给各用户终端设备ONU/T,这样就大幅减少网络机房及设备维护的成本,更节省了大量光缆资源等建置成本,PON因而成为FTTH最新热门技术。PON技术始于20世纪80年代初,目前市场上的PON产品按照其采用的技术,主要分为APON/BPON(ATM PON/宽带PON)、EPON(以太网PON)和GPON(千兆比特PON),其中,GPON是最新标准化和产品化的技术。不同PON技术有着不同的优缺点,如表1所示。
PON作为一种接入网技术,定位在常说的"最后一公里",也就是在服务提供商、电信局端和商业用户或家庭用户之间的解决方案。
随着宽带应用越来越多,尤其是视频和端到端应用的兴起,人们对带宽的需求越来越强烈。在北美,每个用户的带宽需求在5年内将达到20~50Mb/s,而在10年内将达到70Mb/s。在如此高的带宽需求下,传统的技术将无法胜任,而PON技术却可以大显身手。
1987年英国电信公司的研究人员最早提出了PON的概念。下面对几种分别进行介绍。
APON是在1995年提出的,当时,ATM被期望为在局域网(LAN)、城域网(MAN)和主干网占据主要地位。各大电信设备制造商也研发出了APON产品,目前在北美、日本和欧洲都有APON产品的实际应用。然而APON经过多年的发展,并没有很好的占领市场。主要原因是ATM协议复杂,APON的推广受阻的影响,另外设备价格较高,相对于接入网市场来说还较昂贵。由于APON只能为用户端提供ATM服务,2001年底FSAN更新网页把APON改名为BPON,即"宽带PON", APON标准衍变成为能够提供其他宽带服务(如Ethernet接入、视频广播和高速专线等)的BPON标准。
在局域网领域,Ethernet技术高速发展。Ethernet已经发展成为了一个广为接受的标准,现在全球有超过400万个以太端口,95%的LAN都是使用Ethernet技术。Ethernet技术发展很快,传输速率从 10 Mbit/s、100Mbit/s到1000Mbit/s、10 Gbit/s甚至40 Gbit/s,呈数量级提高;应用环境也从LAN向MAN、核心网发展。
EPON就是是由IEEE 802.3工作组在2000年11月成立的EFM(Ethernet in the First Mile)研究小组提出的。EPON是几个最佳的技术和网络结构的结合。EPON以Ethernet为载体,采用点到多点结构、无源光纤传输方式,下行速率目前可达到10 Gbit/s,上行以突发的以太网包方式发送数据流。另外,EPON也提供一定的运行维护和管理(OAM)功能。
EPON技术和现有的设备具有很好的兼容性。而且EPON还可以轻松实现带宽到10 Gbit/s的平滑升级。新发展的服务质量(QoS)技术使以太网对语音、数据和图像业务的支持成为可能。这些技术包括全双工支持、优先级(p802.1p)和虚拟局域网(VLAN)。但目前Ethernet支持多业务的标准还没有形成,它对非数据业务,尤其是TDM业务还不能很好地支持。另外,和GPON相比它的传输效率较低。
2001年,FSAN组启动了另外一项标准工作,旨在规范工作速率高于1Gbit/s的PON网络.这项工作被称为Gigabit PON(GPON)。GPON除了支持更高的速率之外,还要以很高的效率支持多种业务,提供丰富的OAM&P功能和良好的扩展性。大多数先进国家运营商的代表,提出一整套"吉比特业务需求"(GSR)文档,作为提交ITU-T的标准之一;反过来又成为提议和开发GPON解决方案的基础。这说明GPON是一种按照消费者的准确需求设计、由运营商驱动的解决方案,是值得产品用户信赖的。
FTTx在传输层的设计中分为三类,分别是Duplex双纤双向回路,Simplex单纤双向回路和Triplex单纤三向回路。其中双纤回路是在OLT端和ONU端之间使用两路光纤连接,一路为下行(Downstream),信号由OLT端到ONU端;另一路为上行(Upstream),信号由ONU端到OLT端。Simplex单纤回路又称为Bidirectional,简称BIDI,这种方案只使用一条光纤连接OLT端和ONU端,并利用WDM方式,以不同波长的光信号分别传送上行和下行的信号。这种利用WDM方式传输的单纤回路和Duplex双纤回路相比可减少一半的光纤使用量,可以降低ONU用户端的成本,但是使用单纤方式时在光收发模块上要引入分光合光单元,架构比使用双纤方式的光收发模块复杂一点。BIDI上行信号选用1260至1360 nm波段的激光传输,下行则使用1480至1580 nm波段。而在双纤回路中则是上下行都使用1310 nm波段传送信号。
在2004年中国光电产业论坛上,赵梓森院士等多位专家都认为,未来的广电市场将是推动FTTH在中国发展的主力军,因此采用三波长的PON比较方便,其中一个波长(1550nm)传输广播电视,2个波长(1310/1490nm)传输上下行数据,这就需要所谓的Triplex架构。而Triplexer也就成为FTTH系统需要的一种关键元器件,烽火科技集团根据市场需要又迅速推出单纤三向光电产品,主要应用在FTTZ(光纤到小区)、FTTB(光纤到大楼)、FTTH(光纤到家)中。
根据光纤到用户的距离来分类,如图1所示,可分成光纤到交换箱(Fiber To The Cabinet; FTTCab)、光纤到路边(Fiber To The Curb; FTTC)、光纤到大楼(Fiber To The Building; FTTB)及光纤到户(Fiber To The Home; FTTH)等4种服务形态。美国运营商Verizon将FTTB及FTTH合称光纤到驻地(Fiber To The Premise; FTTP)。上述服务可统称FTTx。
FTTC为目前最主要的服务形式,主要是为住宅区的用户作服务,将ONU设备放置于路边机箱,利用ONU出来的同轴电缆传送CATV信号或双绞线传送电话及上网服务。
FTTB依服务对象区分有两种,一种是公寓大厦的用户服务,另一种是商业大楼的公司行号服务,两种皆将ONU设置在大楼的地下室配线箱处,只是公寓大厦的ONU是FTTC的延伸,而商业大楼是为了中大型企业单位,必须提高传输的速率,以提供高速的数据、电子商务、视频会议等宽带服务。
至于FTTH,ITU认为从光纤端头的光电转换器(或称为媒体转换器MC)到用户桌面不超过100米的情况才是FTTH。FTTH将光纤的距离延伸到终端用户家里,使得家庭内能提供各种不同的宽带服务,如VOD、在家购物、在家上课等,提供更多的商机。若搭配WLAN技术,将使得宽带与移动结合,则可以达到未来宽带数字家庭的远景。
Fiber-to-the-x (FTTx)光纤接入
(FTTx, x = H for home, P for premises, C for curb and N for node or neighborhood) 其中FTTH光纤到户,FTTP光纤到驻地,FTTC光纤到路边/小区,FTTN光纤到结点。
光纤到家庭(FTTH)是20年来人们不断追求的梦想和探索的技术方向,但由于成本、技术、需求等方面的障碍,至今还没有得到大规模推广与发展。然而,这种进展缓慢的局面最近有了很大的改观。由于政策上的扶持和技术本身的发展,在沉寂多年后,FTTH再次成为热点,步入快速发展期。目前所兴起的各种相关宽带应用如VoIP、Online-game、E-learning、MOD (Multimedia on Demand)及智能家庭等所带来生活的舒适与便利,HDTV所掀起的交互式高清晰度的收视革命都使得具有高带宽、大容量、低损耗等优良特性的光纤成为将数据传送到客户端的媒质的必然选择。正因为如此,很多有识之士把FTTx(特别是光纤到家、光纤到驻地)视为光通信市场复苏的重要转折点。并且预计今后几年,FTTH网将会有更大的发展。本文将对FTTx的划分,实施的主要技术以及FTTx现在在世界各地的发展做一个综合的介绍。
常说的非开挖修复主要包含管道非开挖修复和非开挖更新两大块。非开挖更新主要是指采用碎(裂)管法,将旧管道破碎拉入新管,从而起到对旧管道的修复和更新的效果。该技术将一个圆锥形的裂管头插入到旧管道内,裂管头...
xDSL是一种新的传输技术,在现有的铜质电话线路上采用较高的频率及相应调制技术,即利用在模拟线路中加入或获取更多的数字数据的信号处理技术来获得高传输速率(理论值可达到52Mbps)。各种DSL技术最大...
[论文]桥梁盖梁支架施工技术分类介绍
[论文]桥梁盖梁支架施工技术分类介绍——本资料为【论文】桥梁盖梁支架施工技术分类介绍,共7页。本文主要介绍桥梁盖梁支架体系中的满堂支架法、穿钢棒法、抱箍法、预埋钢板法和钢管支架法五种施工技术,从支架结构形式、工艺原理、优缺点、适用范围和施工控制...
说到FTTH,首先就必须谈到光纤接入。光纤接入是指局端与用户之间完全以光纤作为传输媒体。光纤接入可以分为有源光接入和无源光接入。光纤用户网的主要技术是光波传输技术。目前光纤传输的复用技术发展相当快,多数已处于实用化。根据光纤深入用户的程度,可分为FTTC、FTTZ、FTTO、FTTF、FTTH等。
光纤接入是指局端与用户之间完全以光纤作为传输媒体。光纤接入可以分为有源光接入和无源光接入。光纤用户网的主要技术是光波传输技术。光纤传输的复用技术发展相当快,多数已处于实用化。复用技术用得最多的有时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、码分复用(CDM)等。根据光纤深入用户的程度,可分为FTTC、FTTZ、FTTO、FTTB、FTTH等。光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。一般通信电缆最高使用频率约为9~24兆赫(
光纤接入网
光纤接入网是指以光纤为传输介质的网络环境。光纤接入网从技术上可分为两大类:有源光网络(AON,Active Optical Network)和无源光网络(PON,Passive Optical Network)。有源光网络又可分为基于SDH的AON和基于PDH的AON;无源光网络可分为窄带PON和宽带PON。
由于光纤接入网使用的传输媒介是光纤,因此根据光纤深入用户群的程度,可将光纤接入网分为FTTC(光纤到路边)、FTTZ(光纤到小区)、 FTTB(光纤到大楼)、FTTO(光纤到办公室)和FTTH(光纤到户),它们统称为FTTx。FTTx不是具体的接入技术,而是光纤在接入网中的推进程度或使用策略。
光纤接入是指局端与用户之间完全以光纤作为传输媒体。光纤接入可以分为有源光接入和无源光接入。光纤用户网的主要技术是光波传输技术。目前光纤传输的复用技术发展相当快,多数已处于实用化。复用技术用得最多的有时分复用(TDM)、波分复用(WDM)、频分复用(FDM)、码分复用(CDM)等。根据光纤深入用户的程度,可分为FTTC、FTTZ、FTTO、FTTF、FTTH等。
光纤通信不同于有线电通信,后者是利用金属媒体传输信号,光纤通信则是利用透明的光纤传输光波。虽然光和电都是电磁波,但频率范围相差很大。一般通信电缆最高使用频率约为9~24兆赫(10Hz),光纤工作频率在10~10Hz之间。