选择特殊符号
选择搜索类型
请输入搜索
自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,如表1所示,2000年开始在低、中光通量的特殊照明中获得应用。LED的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。
LED产品封装结构的类型如表2所示,也有根据发光颜色、芯片材料、发光亮度、尺寸大小等情况特征来分类的。单个管芯一般构成点光源,多个管芯组装一般可构成面光源和线光源,作信息、状态指示及显示用,发光显示器也是用多个管芯,通过管芯的适当连接(包括串联和并联)与合适的光学结构组合而成的,构成发光显示器的发光段和发光点。表面贴装LED可逐渐替代引脚式LED,应用设计更灵活,已在LED显示市场中占有一定的份额,有加速发展趋势。固体照明光源有部分产品上市,成为今后LED的中、长期发展方向。
LED脚式封装采用引线架作各种封装外型的引脚,是最先研发成功投放市场的封装结构,品种数量繁多,技术成熟度较高,封装内结构与反射层仍在不断改进。标准LED被大多数客户认为是显示行业中最方便、最经济的解决方案,典型的传统LED安置在能承受0.1W输入功率的包封内,其90%的热量是由负极的引脚架散发至PCB板,再散发到空气中,如何降低工作时pn结的温升是封装与应用必须考虑的。包封材料多采用高温固化环氧树脂,其光性能优良,工艺适应性好,产品可*性高,可做成有色透明或无色透明和有色散射或无色散射的透镜封装,不同的透镜形状构成多种外形及尺寸,例如,圆形按直径分为Φ2mm、Φ3mm、Φ4.4mm、Φ5mm、Φ7mm等数种,环氧树脂的不同组份可产生不同的发光效果。花色点光源有多种不同的封装结构:陶瓷底座环氧树脂封装具有较好的工作温度性能,引脚可弯曲成所需形状,体积小;金属底座塑料反射罩式封装是一种节能指示灯,适作电源指示用;闪烁式将CMOS振荡电路芯片与LED管芯组合封装,可自行产生较强视觉冲击的闪烁光;双色型由两种不同发光颜色的管芯组成,封装在同一环氧树脂透镜中,除双色外还可获得第三种的混合色,在大屏幕显示系统中的应用极为广泛,并可封装组成双色显示器件;电压型将恒流源芯片与LED管芯组合封装,可直接替代5—24V的各种电压指示灯。面光源是多个LED管芯粘结在微型PCB板的规定位置上,采用塑料反射框罩并灌封环氧树脂而形成,PCB板的不同设计确定外引线排列和连接方式,有双列直插与单列直插等结构形式。点、面光源现已开发出数百种封装外形及尺寸,供市场及客户适用。
LED发光显示器可由数码管或米字管、符号管、矩陈管组成各种多位产品,由实际需求设计成各种形状与结构。以数码管为例,有反射罩式、单片集成式、单条七段式等三种封装结构,连接方式有共阳极和共阴极两种,一位就是通常说的数码管,两位以上的一般称作显示器。反射罩式具有字型大,用料省,组装灵活的混合封装特点,一般用白色塑料制作成带反射腔的七段形外壳,将单个LED管芯粘结在与反射罩的七个反射腔互相对位的PCB板上,每个反射腔底部的中心位置是管芯形成的发光区,用压焊方法键合引线,在反射罩内滴人环氧树脂,与粘好管芯的PCB板对位粘合,然后固化即成。反射罩式又分为空封和实封两种,前者采用散射剂与染料的环氧树脂,多用于单位、双位器件;后者上盖滤色片与匀光膜,并在管芯与底板上涂透明绝缘胶,提高出光效率,一般用于四位以上的数字显示。单片集成式是在发光材料晶片上制作大量七段数码显示器图形管芯,然后划片分割成单片图形管芯,粘结、压焊、封装带透镜(俗称鱼眼透镜)的外壳。单条七段式将已制作好的大面积LED芯片,划割成内含一只或多只管芯的发光条,如此同样的七条粘结在数码字形的可伐架上,经压焊、环氧树脂封装构成。单片式、单条式的特点是微小型化,可采用双列直插式封装,大多是专用产品。LED光柱显示器在106mm长度的线路板上,安置101只管芯(最多可达201只管芯),属于高密度封装,利用光学的折射原理,使点光源通过透明罩壳的13-15条光栅成像,完成每只管芯由点到线的显示,封装技术较为复杂。
半导体pn结的电致发光机理决定LED不可能产生具有连续光谱的白光,同时单只LED也不可能产生两种以上的高亮度单色光,只能在封装时借助荧光物质,蓝或紫外LED管芯上涂敷荧光粉,间接产生宽带光谱,合成白光;或采用几种(两种或三种、多种)发不同色光的管芯封装在一个组件外壳内,通过色光的混合构成白光LED。这两种方法都取得实用化,日本2000年生产白光LED达1亿只,发展成一类稳定地发白光的产品,并将多只白光LED设计组装成对光通量要求不高,以局部装饰作用为主,追求新潮的电光源。
在2002年,表面贴装封装的LED(SMDLED)逐渐被市场所接受,并获得一定的市场份额,从引脚式封装转向SMD符合整个电子行业发展大趋势,很多生产厂商推出此类产品。
早期的SMD LED大多采用带透明塑料体的SOT-23改进型,卷盘式容器编带包装。在SOT-23基础上,前者为单色发光,后者为双色或三色发光。近些年,SMD LED成为一个发展热点,很好地解决了亮度、视角、平整度、可*性、一致性等问题,采用更轻的PCB板和反射层材料,在显示反射层需要填充的环氧树脂更少,并去除较重的碳钢材料引脚,通过缩小尺寸,降低重量,可轻易地将产品重量减轻一半,最终使应用更趋完美,尤其适合户内,半户外全彩显示屏应用。
表3示出常见的SMD LED的几种尺寸,以及根据尺寸(加上必要的间隙)计算出来的最佳观视距离。焊盘是其散热的重要渠道,厂商提供的SMD LED的数据都是以4.0×4.0mm的焊盘为基础的,采用回流焊可设计成焊盘与引脚相等。超高亮度LED产品可采用PLCC(塑封带引线片式载体)-2封装,通过独特方法装配高亮度管芯,产品热阻为400K/W,可按CECC方式焊接,其发光强度在50mA驱动电流下达1250mcd。七段式的一位、两位、三位和四位数码SMD LED显示器件的字符高度为12.7mm,显示尺寸选择范围宽。PLCC封装避免了引脚七段数码显示器所需的手工插入与引脚对齐工序,符合自动拾取—贴装设备的生产要求,应用设计空间灵活,显示鲜艳清晰。多色PLCC封装带有一个外部反射器,可简便地与发光管或光导相结合,用反射型替代透射型光学设计,为大范围区域提供统一的照明,研发在3.5V、1A驱动条件下工作的功率型SMD LED封装。
LED芯片及封装向大功率方向发展,在大电流下产生比Φ5mmLED大10-20倍的光通量,必须采用有效的散热与不劣化的封装材料解决光衰问题,因此,管壳及封装也是其关键技术,能承受数W功率的LED封装已出现。5W系列白、绿、蓝绿、蓝的功率型LED从2003年初开始供货,白光LED光输出达1871lm,光效44.31lm/W绿光衰问题,开发出可承受10W功率的LED,大面积管;匕尺寸为2.5×2.5mm,可在5A电流下工作,光输出达2001lm,作为固体照明光源有很大发展空间。
Luxeon系列功率LED是将A1GalnN功率型倒装管芯倒装焊接在具有焊料凸点的硅载体上,然后把完成倒装焊接的硅载体装入热沉与管壳中,键合引线进行封装。这种封装对于取光效率,散热性能,加大工作电流密度的设计都是最佳的。其主要特点:热阻低,一般仅为14℃/W,只有常规LED的1/10;可靠性高,封装内部填充稳定的柔性胶凝体,在-40-120℃范围,不会因温度骤变产生的内应力,使金丝与引线框架断开,并防止环氧树脂透镜变黄,引线框架也不会因氧化而玷污;反射杯和透镜的最佳设计使辐射图样可控和光学效率最高。另外,其输出光功率,外量子效率等性能优异,将LED固体光源发展到一个新水平。
Norlux系列功率LED的封装结构为六角形铝板作底座(使其不导电)的多芯片组合,底座直径31.75mm,发光区位于其中心部位,直径约(0.375×25.4)mm,可容纳40只LED管芯,铝板同时作为热沉。管芯的键合引线通过底座上制作的两个接触点与正、负极连接,根据所需输出光功率的大小来确定底座上排列管芯的数目,可组合封装的超高亮度的AlGaInN和AlGaInP管芯,其发射光分别为单色,彩色或合成的白色,最后用高折射率的材料按光学设计形状进行包封。这种封装采用常规管芯高密度组合封装,取光效率高,热阻低,较好地保护管芯与键合引线,在大电流下有较高的光输出功率,也是一种有发展前景的LED固体光源。
在应用中,可将已封装产品组装在一个带有铝夹层的金属芯PCB板上,形成功率密度LED,PCB板作为器件电极连接的布线之用,铝芯夹层则可作热沉使用,获得较高的发光通量和光电转换效率。此外,封装好的SMD LED体积很小,可灵活地组合起来,构成模块型、导光板型、聚光型、反射型等多姿多彩的照明光源。
功率型LED的热特性直接影响到LED的工作温度、发光效率、发光波长、使用寿命等,因此,对功率型LED芯片的封装设计、制造技术更显得尤为重要。
COB封装可将多颗芯片直接封装在金属基印刷电路板MCPCB,通过基板直接散热,不仅能减少支架的制造工艺及其成本,还具有减少热阻的散热优势。
从成本和应用角度来看,COB成为未来灯具化设计的主流方向。COB封装的LED模块在底板上安装了多枚LED芯片,使用多枚芯片不仅能够提高亮度,还有助于实现LED芯片的合理配置,降低单个LED芯片的输入电流量以确保高效率。而且这种面光源能在很大程度上扩大封装的散热面积,使热量更容易传导至外壳。
半导体照明灯具要进入通用照明领域,生产成本是第一大制约因素。要降低半导体照明灯具的成本,必须首先考虑如何降低LED的封装成本。传统的LED灯具做法是:LED光源分立器件→MCPCB光源模组→LED灯具,主要是基于没有适用的核心光源组件而采取的做法,不但耗工费时,而且成本较高。实际上,如果走“COB光源模块→LED灯具”的路线,不但可以省工省时,而且可以节省器件封装的成本。
在成本上,与传统COB光源模块在照明应用中可以节省器件封装成本、光引擎模组制作成本和二次配光成本。在相同功能的照明灯具系统中,总体可以降低30%左右的成本,这对于半导体照明的应用推广有着十分重大的意义。在性能上,通过合理地设计和模造微透镜,COB光源模块可以有效地避免分立光源器件组合存在的点光、眩光等弊端,还可以通过加入适当的红色芯片组合,在不降低光源效率和寿命的前提下,有效地提高光源的显色性(已经可以做到90以上)。
在应用上,COB光源模块可以使照明灯具厂的安装生产更简单和方便。在生产上,现有的工艺技术和设备完全可以支持高良品率的COB光源模块的大规模制造。随着LED照明市场的拓展,灯具需求量在快速增长,我们完全可以根据不同灯具应用的需求,逐步形成系列COB光源模块主流产品,以便大规模生产。
一、工艺:
1)清洗:采用超声波清洗PCB或LED支架,并烘干。
2)装架:在LED管芯底部电极备上银胶后进行扩张,将扩张后的管芯安置在刺晶台上,在显微镜下用刺晶笔将管芯一个一个安装在PCB或LED相应的焊盘上,随后进行烧结使银胶固化。
3)压焊:用铝丝或金丝焊机将电极连接到LED管芯上,以作电流注入的引线。LED直接安装在PCB上的,一般采用铝丝焊机。
4)封装:通过点胶,用环氧将LED管芯和焊线保护起来。在PCB板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品的出光亮度。这道工序还将承担点荧光粉的任务。
5)焊接:如果背光源是采用SMD-LED或其它已封装的LED,则在装配工艺之前,需要将LED焊接到PCB板上。
6)切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。
7)装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。
8)测试:检查背光源光电参数及出光均匀性是否良好。
9)包装:将成品按要求包装、入库。
二、封装工艺
1、LED的封装的任务
是将外引线连接到LED芯片的电极上,同时保护好LED芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。
2、LED封装形式
LED封装形式可以说是五花八门,主要根据不同的应用场合采用相应的外形尺寸,散热对策和出光效果。LED按封装形式分类有Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED等。
3、LED封装工艺流程
三、封装工艺说明
1、芯片检验
镜检:材料表面是否有机械损伤及麻点麻坑
芯片尺寸及电极大小是否符合工艺要求;电极图案是否完整
2、扩片
由于LED芯片在划片后依然排列紧密间距很小,不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,是LED芯片的间距拉伸到约0.6mm.也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。
3、点胶
在LED支架的相应位置点上银胶或绝缘胶。工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。
4、备胶
和点胶相反,备胶是用备胶机先把银胶涂在LED背面电极上,然后把背部带银胶的LED安装在LED支架上。备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。
5、手工刺片
将扩张后LED芯片安置在刺片台的夹具上,LED支架放在夹具底下,在显微镜下用针将LED芯片一个一个刺到相应的位置上。手工刺片和自动装架相比有一个好处,便于随时更换不同的芯片,适用于需要安装多种芯片的产品。
6、自动装架
自动装架其实是结合了沾胶和安装芯片两大步骤,先在LED支架上点上银胶,然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上。自动装架在工艺上主要要熟悉设备操作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED芯片表面的损伤,特别是兰、绿色芯片必须用胶木的。因为钢嘴会划伤芯片表面的电流扩散层。
7、烧结
烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良。银胶烧结的温度一般控制在150℃,烧结时间2小时。根据实际情况可以调整到170℃,1小时。绝缘胶一般150℃,1小时。
银胶烧结烘箱的必须按工艺要求隔2小时打开更换烧结的产品,中间不得随意打开。烧结烘箱不得再其他用途,防止污染。
8、压焊
压焊的目的将电极引到LED芯片上,完成产品内外引线的连接工作。LED的压焊工艺有金丝球焊和铝丝压焊两种。铝丝压焊的过程是先在LED芯片电极上压上第一点,再将铝丝拉到相应的支架上方,压上第二点后扯断铝丝。金丝球焊过程则在压第一点前先烧个球,其余过程类似。压焊是LED封装技术中的关键环节,工艺上主要需要监控的是压焊金丝拱丝形状,焊点形状,拉力。对压焊工艺的深入研究涉及到多方面的问题,如金丝材料、超声功率、压焊压力、劈刀选用、劈刀运动轨迹等等。
9、点胶封装
LED的封装主要有点胶、灌封、模压三种。基本上工艺控制的难点是气泡、多缺料、黑点。设计上主要是对材料的选型,选用结合良好的环氧和支架。一般情况下TOP-LED和Side-LED适用点胶封装。手动点胶封装对操作水平要求很高,主要难点是对点胶量的控制,因为环氧在使用过程中会变稠。白光LED的点胶还存在荧光粉沉淀导致出光色差的问题。
10、灌胶封装
Lamp-LED的封装采用灌封的形式。灌封的过程是先在LED成型模腔内注入液态环氧,然后插入压焊好的LED支架,放入烘箱让环氧固化后,将LED从模腔中脱出即成型。
11、模压封装
将压焊好的LED支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧放入注胶道的入口加热用液压顶杆压入模具胶道中,环氧顺着胶道进入各个LED成型槽中并固化。
12、固化与后固化
固化是指封装环氧的固化,一般环氧固化条件在135℃,1小时。模压封装一般在150℃,4分钟。
13、后固化
后固化是为了让环氧充分固化,同时对LED进行热老化。后固化对于提高环氧与支架的粘接强度非常重要。一般条件为120℃,4小时。
14、切筋和划片
由于LED在生产中是连在一起的,Lamp封装LED采用切筋切断LED支架的连筋。SMD-LED则是在一片PCB板上,需要划片机来完成分离工作。
15、测试
测试LED的光电参数、检验外形尺寸,同时根据客户要求对LED产品进行分选。
16、包装
将成品进行计数包装。超高亮LED需要防静电包装。2100433B
LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作用:保护管芯等不受外界侵蚀;采用不同的形状和材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,控制光的发散角;管芯折射率与空气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取出,大部分易在管芯内部经多次反射而被吸收,易发生全反射导致过多光损失,选用相应折射率的环氧树脂作过渡,提高管芯的光出射效率。用作构成管壳的环氧树脂须具有耐湿性,绝缘性,机械强度,对管芯发出光的折射率和透射率高。选择不同折射率的封装材料,封装几何形状对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、封装透镜所用材质和形状有关。若采用尖形树脂透镜,可使光集中到LED的轴线方向,相应的视角较小;如果顶部的树脂透镜为圆形或平面型,其相应视角将增大。
一般情况下,LED的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,LED的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数LED的驱动电流限制在20mA左右。但是,LED的光输出会随电流的增大而增加,很多功率型LED的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的LED封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导热性能好的银胶,增大金属支架的表面积,焊料凸点的硅载体直接装在热沉上等方法。此外,在应用设计中,PCB线路板等的热设计、导热性能也十分重要。
进入21世纪后,LED的高效化、超高亮度化、全色化不断发展创新,红、橙LED光效已达到100Im/W,绿LED为501m/W,单只LED的光通量也达到数十Im。LED芯片和封装不再沿袭传统的设计理念与制造生产模式,在增加芯片的光输出方面,研发不仅仅限于改变材料内杂质数量,晶格缺陷和位错来提高内部效率,同时,如何改善管芯及封装内部结构,增强LED内部产生光子出射的几率,提高光效,解决散热,取光和热沉优化设计,改进光学性能,加速表面贴装化SMD进程更是产业界研发的主流方向。
LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而LED封装则是完成输出电信号,保...
砖混结构
结构图里的现浇钢筋混凝土水池及框架结构设备房,钢筋算量里的结构类型选框架结构。
LED封装技术大全
LED 封装技术大全 LED封装所驱动的功率大小受限于封装体热阻与所搭配之散热模块 (Rca) ,两者决定 LED的 系统热阻和稳态所能忍受的最大功率值。 为降低封装热阻, 业者试图加大封装体内 LED晶粒 分布距离, 然 LED晶粒分布面积不宜太大, 过大的发光面积会使后续光学难以处理, 也限制 该产品的应用。 不可一味将更多的 LED晶粒封装于单一体内, 以求达到高功率封装目的, 因 为仍有诸多因素待考虑,尤其是对于应用面。 多晶粒封装材料不断发展 随着 LED封装 功率提升,多晶粒封装 (Multi-chip Package)成为趋势,传统高功率 LED 封装多采用塑料射出之预成型导线架 (Pre-mold Lead Frame) 方式 (图 1a),封装载体 (Carrier) 又称为芯片承载 (Die Pad),为一连续的金属块,已无法满足多晶粒串接之电性需 求,电性串并联方式直
大功率LED封装技术
大功率 LED 封装技术 导读 : 在现在 LED 技术中,封装技术起 到很关键的作用个,作为 LED 产业中承上 启下的封装技术, 它的好坏对下游产业的应 用十分关键,现在将对 LED 的封装技术做 一下介绍。 o 关键字 o (四)、封装大生产技术 晶片键合 (Wafer bonding) 技术是指晶 片结构和电路的制作、封装都在晶片 (Wafer) 上进行,封装完成后再进行切割, 形成单个的晶片 (Chip); 与之相对应的晶片 键合 (Die bonding) 是指晶片结构和电路在 晶片上完成后,即进行切割形成晶片 (Die), 然后对单个晶片进行封装 (类似现在的 LED 封装工艺 ),如图 8 所示。很明显,晶 片键合封装的效率和质量更高。由于封装 费用在 LED 器件制造成本中占了很大比 例,因此,改变现有的 LED 封装形式 (从 晶片键合到晶片键合 ),将大大降低封装制
大功率LED封装由于结构和工艺复杂,并直接影响到LED的使用性能和寿命,特别是大功率白光LED封装更是研究热点中的热点。LED封装的功能主要包括:1.机械保护,以提高可靠性;2.加强散热,以降低芯片结温,提高LED性能;3.光学控制,提高出光效率,优化光束分布;4.供电管理,包括交流/直流转变,以及电源控制等。
LED封装方法、材料、结构和工艺的选择主要由芯片结构、光电/机械特性、具体应用和成本等因素决定。经过40多年的发展,LED封装先后经历了支架式(Lamp LED)、贴片式(SMD LED)、功率型LED(Power LED)等发展阶段。随着芯片功率的增大,特别是固态照明技术发展的需求,对LED封装的光学、热学、电学和机械结构等提出了新的、更高的要求。为了有效地降低封装热阻,提高出光效率,必须采用全新的技术思路来进行封装设计。
1、扩晶,把排列的密密麻麻的晶片弄开一点便于固晶。
2、固晶,在支架底部点上导电/不导电的胶水(导电与否视晶片是上下型PN结还是左右型PN结而定)然后把晶片放入支架里面。
3、短烤,让胶水固化焊线时晶片不移动。
4、焊线,用金线把晶片和支架导通。
5、前测,初步测试能不能亮。
6、灌胶,用胶水把芯片和支架包裹起来。
7、长烤,让胶水固化。
8、后测,测试能亮与否以及电性参数是否达标。
9、分光分色,把颜色和电压大致上一致的产品分出来。
10、包装。
随着发光二极管(LED)制造工艺的进步,新材料的开发,各种颜色的超高亮度LED取得了突破性发展,LED成为第四代光源已指日可待。本书介绍LED的基础知识,详细叙述了LED的原材料、封装制程、封装形式与技术、封装的配光基础、性能指标与测试,以及LED封装防静电的知识和行业标准等,本书可作为大学相关专业的教材,也可作为LED生产企业技术人员、管理人员的参考资料。 2100433B