选择特殊符号
选择搜索类型
请输入搜索
SIR30E红外测温仪可广泛应用于石油、化工、铁路、医疗、电力、冶金、纺织、塑料、金属加工、节能等行业快速非接触地测量物体表面的温度。
SIR30E红外测温仪由于工业安全及卫生意识越来越受重视,红外
线科技应用逐渐取代传统接触式温度测量方法(如运
转中物体,高温/高压危险区域、食品卫生等等)。本
系列产品除了有雷射指示、显示器背光、温度单位
(℃/℉)转换、系统自动休眠等基本功能。
技术参数
温度范围 -20~320℃(-4~605℉) 精确度 +2%或+2%℃(+3%℉)取最大值
距离与目标比 12:1
电热堆 5-14μm
重复率 +1℃(+2℉)
解析度 0.5℃(0.5℉)
反应时间 500ms
使用温度 0-50℃(32`122℉),10-90%RH
省电睡眠装置 无动作后,自动6秒关机
放射率 0.95
贮藏温度 -10~60℃(14~140℉)
℃/℉切换 YES
背光模式 YES
雷射指示 YES
电池种类 9V(006P,IEC6F22,NEDA1604)
电池寿命 16HRS
尺寸 150×133×45MM
重量 约135克
SIR30E红外测温仪是新研制的用微型计算机进行数据采集、处理的高性能、高品质仪器,该系列仪器具有距离系数大,测温范围宽,测量精度高、响应速度快的共同优点,该系列仪器具有辐射率调整、最大值、最小值、平均值、温差和上/下限温度设置及超限声光报警等功能,且仪器体积小、重量轻、操作简单、使用可靠。
汞柱是不一样的。
产品特性:AR320,红外测温仪,AR320红外测温仪,香港希玛红外测温仪 产品简介:品牌:香港希玛 ;型号:AR-320 ;类...
红外线测温仪英文译为:Infrared Thermometer .红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源...
红外测温仪电路图
EA/VP31 X119 X218 RESET9 RD17 WR 16 INT012 INT113 T014 T1 15 P101 P112 P123 P134 P145 P15 6 P167 P178 P00 39 P01 38 P02 37 P03 36 P04 35 P05 34 P06 33 P07 32 P20 21 P21 22 P22 23 P23 24 P24 25 P25 26 P26 27 P27 28 PSEN 29ALE/P 30TXD 11RXD 10 IC1 AT89 C5 5 SDE LCD RS LCD R/W LCD ENB CS2 DOU CLK SIDL KEY1 KEY2 KEY3 KEY4 X1 X2 RST JDQ DIN D0 D1 D2 D3 D5 D6 D7 RXD TXD XT2 22. 118 4M C4 22P C3 22P X1 X
基于单片机的红外测温仪设计
设计以单片机作为整个测温仪的核心,结合A/D转换器、液晶显示器等外部设备,在软件设计和硬件设计的基础上,设计出一种拥有汉字显示逻辑判断等智能型电子测温计。它提供了一种新的温度测量方案,采用红外温度传感器来测量温度信号,可同时测量目标温度和环境温度,并将测量的数据经过放大器,转换器送给单片机处理,之后送数码管显示。红外测温打破了传统的测温模式,它响应快、测量精度高、可靠性高、范围广,为非接触测量,因而不易损坏。该温度计以准确快捷的测量功能、清晰易懂的数字化显示方便人们日常生活使用。
红外测温仪在工业上的应用非常广泛,用的最多的主要是便携式红外测温仪及在线式红外测温仪。目前,随着光纤红外测温仪技术上的日趋成熟,及其在工业现场显现出来的优点日益突出,光纤红外测温仪也已开始慢慢替代在线测温的一体式红外测温仪,应用于工业现场的各个场合。
光纤红外测温仪目前的主要应用市场是在工业现场。因为一体式红外测温仪对使用环境要求很苛刻,一般要保持仪器安装在环境温度不超过50摄氏度场合,否则将会因电路元件受温度的影响而导致测量值失真,甚至仪器损坏,所以,一般在工业现场在线使用的一体式红外测温仪都装有水冷套等降温保护措施,安装麻烦,使用成本也高。而光纤红外测温仪采用的是分体式设计,将基本不受温度影响的光路系统(即光学探头)安装在测温现场;而把对环境温度要求较苛刻的信号处理/显示器安装在远离测温现场的地方,可以保证信号处理/显示器始终正常工作;中间通过一根红外光纤,将光学探头接收到的红外信号传输到信号处理器进行处理。这样,仪表便有了长期工作的稳定性及可靠性,且安装简易,无需水冷等降温措施,使用成本低廉,设备维护也方便。
红外测温仪器的种类
红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,1990年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,美国生产的雷泰测温仪;国产的TI51/41系列红外测温仪等也有较广泛的应用。
红外测温仪工作原理
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。
一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布--与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。
物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。
影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。
当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。
一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。
物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。
影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。
当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。