选择特殊符号
选择搜索类型
请输入搜索
测地线方程是一个二阶微分方程组,由于各未知函数及其一阶导数在各个方程中互相耦合,求解并不简单。但是如果时空有足够数量的Killing矢量场,那么就可以利用测地线的切矢和Killing矢量场的内积在测地线上为常数的性质把测地线方程化为一阶微分方程求解。
通过爱因斯坦场方程确定时空度规后就可以解测地线方程来得到自由粒子的运动轨迹。广义相对论最初的观察结果验证日食的光偏折的理论计算,便是爱因斯坦求解史瓦西时空下的测地线方程,利用其一级近似得出的结论。
抽象指标下某时空的测地线方程形式为 :
分别是测地线的切矢量和该时空的协变导数。
若考虑某一坐标系{xμ},测地线方程可以写成分量形式 :
曲线y=2x²+1,在点(1.3)处的切线方程是?求解解:y′=4x+1,故y′(1)=5,∴在点(1,3)处的切线方程为y=5(x-1)+3=6x-2.
这样的么?
简单推导
曲线坐标方程理论在大断面硐室施工中的应用
该文结合硐室施工特点 ,介绍了利用曲线坐标方程进行炮眼定位的方法 ,对大断面硐室正台阶施工法地推广具有较高的价值。
也称作测地线进动(Geodetic Effect或Geodetic Precession)是指在广义相对论预言下引力场的时空曲率对处于其中的具有自旋角动量的测试质量的运动状态所产生的影响,这种影响造成了测试质量的自旋角动量在引力场内沿测地线的进动。这种效应在今天成为了广义相对论的一种实验验证方法,并且已经由美国国家航空航天局于2004年发射的科学探测卫星“引力探测器B”在观测中证实。
由于广义相对论本身是一种几何理论,所有的引力效应都可以用时空曲率来解释,测地线效应也不例外。不过,这里自旋角动量的进动也可以部分地从广义相对论的替代理论之一——引力磁性来理解。
从引力磁性的观点来看,测地线效应首先来源于轨道-自旋耦合作用。在引力探测器B的观测中,这是引力探测器B中的陀螺仪的自旋和位于轨道中心的地球的质量流的相互作用。本质上这完全可以和电磁理论中的托马斯进动做类比。这种相互作用所导致的进动在全部的测地线进动中起到三分之一的贡献。
另外的三分之二贡献不能用引力磁性来解释,只能认为来自于时空曲率。简单来说,平直时空中沿轨道运动的自旋角动量方向会随着引力场造成的时空弯曲而倾斜。这一点其实并不难于理解:垂直于一个平面的矢量在平面发生弯曲后定然会改变方向。根据推算,引力探测器B的绕地轨道周长由于地球引力场的影响会比不考虑引力场时的周长缩短1.1英寸(约合2.8厘米),这个例子在引力探测器B的研究中经常被称作“丢失的一英寸”。在引力探测器B的位于642千米高空的极轨道上,广义相对论的理论预言由于自旋-轨道耦合和时空曲率而产生的轨道平面上的测地线效应总和为每年进动6.606角秒(约合0.0018度)。这对于弱引力场中相对论效应来说已经是一个相当显著的影响了(作为同为引力探测器B的观测任务之一的地球引力场的参考系拖拽要比测地线效应弱170倍)。引力探测器B的观测结果首先在2007年4月举行的美国物理学会四月年会上进行了快报,其观测结果与理论误差小于1%。
在 Raychaudhuri 方程中, 如果所考虑的测地线束局部正比于某个梯度场, 或者说垂直于某个超曲面, 则称该线束是超曲面垂直(hypersurface orthogonal) 的。 可以证明, 对于这样的测地线束来说, 涡旋张量 ωab 为零, 从而 Raychaudhuri 方程可以简化为:
dθ/dτ = -RabVaVb - (1/3)θ2 - σabσab
由于 σabσab 总是非负的, 因此从这个方程中我们可以得到:
dθ/dτ ≤ -RabVaVb - (1/3)θ2
如果进一步假定强能量条件成立, 即 RabVaVb 处处非负, 则上述不等式可以进一步简化为:
dθ/dτ ≤ - (1/3)θ2
对这个不等式进行积分可得:
θ-1 ≥ θ0-1 (1/3)(τ-τ0)
其中 θ0=θ(τ0)。
从这个不等式我们可以得到一个重要的推论, 那就是倘若 θ0<0, 即线束在 τ=τ0 时出现汇聚效应, 则 θ 会在有限固有时间 τ-τ0≤3/|θ0| 内趋于负无穷。 可以证明, 这意味着测地线束在该处汇聚为一点, 或者说测地偏离矢量场 - 也称为 Jacobi 场 - 在该处为零。
上面这些结果都是针对类时测地线的。 不过可以证明, 除了一些不影响定性结果的差异 (比如 Raychaudhuri 方程中的数值因子 1/3 因垂直子空间维数的改变而变成 1/2, 固有时间 τ 变成仿射参数 λ, 等) 外, 类光测地线也具有类似的性质。 类光测地线所满足的一般性条件为: 每条类光测地线上至少有一个点使得 k[eRa]bc[dkf]kbkc ≠ 0。 这个条件被称为类光一般性条件 (null generic condition)。