选择特殊符号
选择搜索类型
请输入搜索
反铁磁体内由于原子之间的相互作用使之与铁磁体一样具有磁有序结构,相邻自旋磁矩作反平行排列,大小恰好相抵消,因而不具有固有的自发磁化磁矩,此种性质称为反铁磁性。反铁磁体具有较大的顺磁磁化率,在一定温度TN处存在磁化率的峰值,温度大于TN时反铁磁性消失而成为顺磁体,临界温度TN称为奈耳温度。在奈耳温度TN处,反铁磁体的热胀系数和比热容等均发生突变。锰、铁、钴、镍等过渡族金属的氧化物均是反铁磁体。
亚铁磁性与反铁磁性具有相同的物理本质,只是亚铁磁体中反平行的自旋磁矩大小不等,因而存在部分抵消不尽的自发磁矩,类似于铁磁体。温度高于某一数值Tc时,亚铁磁体变为顺磁体,Tc称居里温度。铁氧体大都是亚铁磁体。
在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列,所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。
磁介质使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场存在或分布的物质,称为磁介质。磁介质在磁场作用下内部状态的变化叫做磁化。磁场强度与磁通密...
放硬盘呀,存储,重要设备等等,主要是可以防磁 防水 防火 防锈 保障安全
首先应该明确,即使是从厂家出来的全新硬盘,它们的盘片也不是一点瑕疵也没有的。由于磁盘的盘片比较精密,对于生产环境和移动都有非常高的要求,即使是一粒灰尘、一次很轻微的碰撞,都会产生从几个到数以百计的坏扇...
实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即 cm =C/T,C称为居里常数,T为热力学温度,此关系称为居里定律。
铁磁体在低于一定温度Tc时,内部存在许多自发磁化的小区域,称为磁畴,磁畴具有磁有序结构,同一磁畴内分子磁矩同向。无外磁场时不同磁畴的取向作无规分布,宏观上不显示磁性;在外磁场作用下磁畴转向,宏观体积内的总磁矩不为零,内部可产生与外磁场方向一致的、比外磁场要强得多的附加磁场。外磁场撤去后仍保留部分磁化强度。铁磁体还具有磁滞现象(见铁磁性)。铁磁体属强磁物质,是应用最广的磁介质。
从磁介质的原子构成,它们间的相互作用以及它们在磁场下的反应,来讨论六种磁介质的性质:
抗磁性是所有材料都具有的。虽然它很弱。抗磁物质由无净磁矩的原子(即原子所有轨道层都充满电子;没有不成对的电子)它只有原子的电子绕轨道运动产生的磁矩。在磁场作用下,电子受到罗仑兹力作用,使电子绕轨道运动的面积减少;等效于产生与磁场方向相反的磁矩。故称为抗磁性。材料在磁场作用下所产生的磁化强度 M=xH;这里x 称为磁化率; H 是外加磁场。因此,抗磁物质的磁化率 x 是负的。x与温度无关。
这类物质的原子轨道只有部分填充电子,故原子有净磁矩。铁原子是没充满的典型原子。如这些原子间又没有相互作用,无外场时,整体的磁化强度为零(因每个原子磁矩混乱取向)。外加磁场时,原子磁矩部分取向;顺磁体的磁化强度随磁场增大而增大。故磁化率是正的。数学表达式为: M=xH; x>0,但x随温度升高而下降。这是温度使每个原子磁矩倾向于混乱的原故。x(T)随温度的变化,称居里定律。顺磁物质磁化率的单位和抗磁的相同。粘土:x=13;富铁粘土:x=65;黑云母:x=79 等是顺磁性的物质。
铁磁性的原子都有剩磁矩,而且它们间相互交换作用十分强(来自电子间的交换力),引起原子磁矩平行取向。交换是由于二个电子自旋的相对取向所造成的交换力,是量子力学效应。这种力很强;它相当于1000 Tesla磁场的量级。或近似100 万倍地磁场的大小。铁磁在无外磁场都有一净磁化强度。Fe,Ni,Co 及其合金是铁磁性的典型物质。它有三个特性:(1)自发磁化强度(由自旋磁矩的大小决定);(2)有一磁有序温度(居里温度);在此温度之上,变成磁无序(顺磁性)(3),磁场去后,铁磁物质还保留剩余磁化强度(有磁滞)。顺磁与铁磁的主要性能比较:顺磁磁化达饱和所需外场为10Tesla,铁磁只需1Tesla。
铁的氧化物由于晶体结构形成较复杂的磁有序,称为亚铁磁性。这种磁有序结构由二种称A和B的磁次晶格组成,它们由氧阴离子隔开,但通过氧离子进行间接(超)交换作用。使二种次晶格的自旋反平行取向。由于亚铁磁的二种次晶格的磁矩不相等,使整体物质有一净磁矩。此净磁矩在外场下的行为和铁磁性的相似。它也具有自发磁化强度,居里温度,剩磁(磁滞)等。但铁磁和反铁磁却有十分不同的磁有序结构。Fe3O4是典型的亚铁磁磁介质。
反铁磁介质内,二种磁次晶格原子的磁矩的交换作用是负的,使得每个原子的磁矩方向都与其近邻的每个原子的磁矩方向反平行,如果磁介质内二种次磁晶格的磁矩完全相等,则整体的净磁矩为零。这种类型的磁有序,称为反铁磁性。它从零度至涅尔温度之间的磁化率与顺磁性的相近;在涅尔温度时最大。
反铁磁磁介质一般为过渡金属化合物,特别是氧化物。比较多的括,赤铁矿,铬,铁锰合金和镍的氧化物(NiO)等。
把铁磁或亚铁介质粉碎成纳米尺寸的颗粒,其在磁场下的行为称超顺磁性。因为这些纳米磁性颗粒都各自有磁矩,但在温度的热运动下,它们是混乱取向的,在外磁场作用下,会形成一定的磁化强度。其行为类似顺磁性,但其磁化率则与铁磁或亚铁磁性的介质相近。
综合上面六类磁介质的性质看;六类中,只有抗磁性一种介质的原子没有剩余磁矩。其余五种磁介质的原子都有剩余磁矩。但顺磁介质内的原子没有磁有序。其余的铁磁,亚铁磁,反铁磁和超顺磁介质的原子都有磁有序结构。 2100433B
磁介质理论在钢筋锈蚀检测中的应用研究
基于磁介质理论,根据钢筋混凝土结构中钢筋与铁锈、混凝土、水等成分的不同磁导率特征,采用数值模拟方法分析钢筋对空间磁场分布的影响。分析结果表明,钢筋对其周围磁场强度有显著的增强作用,随着钢筋直径的减小,增强作用逐渐减弱。根据数值模拟结果,设计了MCD钢筋锈蚀检测传感器,并对混凝土中钢筋锈蚀过程进行了监测。试验结果表明,仪器能够动态、定量化表征钢筋锈蚀率,检测结果具有较高的精度。
高梯度磁选用超微细拉制钢板网磁介质
应用高梯度磁选法(EGMS)分选微细粒弱磁性矿物和分离除去不纯物时,为了提高磁性粒子所受的磁力和分选效果,往往采用线径小的磁介质。目前使用的磁介质有拉制钢板网型(250~750μ)和钢毛型,(8.2~200μ)两种,线径小的磁介质只限于钢毛型。钢毛型介质是由经强冷加工的微细金属的集合体所构成。因此,在长期连续使用过
外形是带齿的板状、齿板的齿角为110°,齿尖对齿尖排列的聚磁介质。
《冶金学名词》第二版。
顾 坚 贾伯林 吕志国 左国新 唐唯森 池文君 赵志太 张志和 金锡平 俞建德 田小明 王旗军 孙 峰 肖 宁 范青如 周文彬 陈海明 廖 沈 盛谨文 赵 耀 陈 炜 钱孟康 曹 霞 赵 珅 曹贵华 吴祥昌 张德跃 杨志宏 肖 波 刘运连 郑学彬 孙成才 张 挺 葛文杰 赵国菁 秦爱冬 许铁夫 金 晓 顾 淼 徐扬纲