选择特殊符号
选择搜索类型
请输入搜索
激光技术一出现,就在军事应用方面发挥了巨大作用。激光测距机就是激光技术在军事领域应用的成功典范。脉冲激光测距机作为军用装备器材,发展于60年代初,经过40多年的开发、研制和装备,己经广泛应用于各种应用领域与测距领域。由于其具有良好的方向性和单色性,所以与微波等其它测距方法相比,激光测距具有方向性好、测距精度高、测程远、抗干扰能力强、隐蔽性好等优点,因此在军事领域得到了广泛应用。作为现代军事侦察技术和距离探测设备的重要技术之一,脉冲激光测距技术对提高防空、海上作战、中近程精确打击及陆上武器攻击的命中精度方面己起到了关键作用,未来武器系统的发展及其命中精度的提高将在很大程度上依赖于激光测距技术的发展。
对距离进行测量,是军事中重要研究项目,因为射击、大炮、侦察等都需要精确的距离数据。激光的出现,使各种军用激光测距仪相继发展起来。事实也证明,激光测距与大炮、坦克相结合构成的火控系统,大大提高了首发命中率,己成为军队必备的武装装备,被誉为常规武器的威力倍增器。
其中,脉冲激光测距以其峰值功率高、探测距离远、测距精度高、对光源相干性要求低等优点在工业、航空航天、大地测量、建筑测量和机器人等领域获得了广泛应用。不同的应用对测量范围与精度有不同的要求,在军事上,测量范围从几百米到几十千米,相应的精度要求从几十厘米到几百米;而在航空航天方面,从航天器间的对接到飞船的着陆,精度要求在毫米量级。
激光测距的优点:高激光测距的精度与操作者的经验和被测距离无关,误差取决于仪器的精度。战术激光测距仪的误差在厘米以内,科学实验的测距仪精度更高(有合作目标),最好的测距纪录是384401km,误差仅10cm。用激光测距对卫星进行精密测轨,精度达1cm。口本用于预防地震的长距离监测系统,全程84km误差小于1mm,测距仪体积小重量轻,己装备的激光测距仪重量一般为10kg左右,最小只有0.36kg,体积只有香烟盒那么大。激光由于方向性好,所以可以不用巨大的天线就可以发射极窄的光束。如束散角为1/20mrad的激光束,只需直径7.62cm的光学天线;而对微波来说要想得到同样的束散角,其天线直径需305m以上。
激光分辨率高,抗干扰能力强,窄的光束和短的脉冲宽度,不仅使微波的横向和纵向目标分辨率大大提高,而且不受电磁干扰和地波干扰。例如在导弹的初始段微波测距由于严重的地波干扰而不能使用,激光却得心应手。
激光测距按测距原理区分,大体有如下三类:
(1)脉冲测距法,这种脉冲测距的精度大都为米的量级,是用于军事及工程测量中精度要求不高的场合使用。
(2)相位测距法,通过测量单色连续激光的调制波在待测距离上往返传播所发生的相位变化,间接测量时间,达到距离测量目的。这种方法测量精度高,通常在毫米量级,因而在大地、工程和体育测量中得到了广泛应用。
(3)干涉测距法,它也是一种相位法测距,但不是通过测量激光调制信号的相位来测定距离,而是通过测量激光光波本身的干涉条纹变化来测定距离,所以距离分辨率可达到半个激光波长,通常达到微米量级。
测距定位系统是由GPS定位模块、激光测距模块、三维数字罗盘、供电系统、掌上电脑、数据控制中心(含实时质量控制模块、数据获取存储模块、目标粗定位模块等)等模块构成。系统中,GPS模块可以实时测定流动点的位置并提供测量时间,为系统提供WGS84大地测量基准和时间基准;激光测距模块获取流动点至目标点间的斜距;三维数字罗盘提供系统的姿态;供电系统提供各模块的正常工作用电接口及外接电源串口,保证各模块的正常稳定工作;掌上电脑用于存储接收到的数据并发出有关命令;数据控制中心实现数据的综合处理及用户界面的可视化操作。
激光测距仪,都是老外玩的比较早,国内厂商最近5 ,6年才新起来,愣是把老外的高价位拉到接近地平线~不过老外的东西还是有部分功能,国内产品暂时无法替代,不过相信不远的将来,就会全面替代进口~ 有关价格问...
一般的都是在2.3000左右的,建议比较选购。
激光测距仪的原理我简单跟您说一下:1:脉冲测距,简单来说跟蝙蝠发出声波从发出到碰撞物体,到返回一样的道理2:相位 光的反射原理 3:搭配科创量房神器效果更佳
1)作业人员手持GPS激光测距系统从目镜瞄准待定位目标,按下测距按钮,交互式界面实时显示流动点位置、目标到流动点的距离、视线姿态和目标粗略位置信息。
2)作业人员移动一段距离,从下一个方位瞄准目标测距,交互界面除显示流动点位置、目标到流动点的距离、视线姿态和目标粗略位置信息外,还将实时显示状态信息。当状态正常时,显示上次与本次观测数据综合计算的目标位置信息;当状态异常时,显示上次的目标定位信息。
3)作业人员继续移动一段距离,从另一个方位瞄准目标测距。当状态正常时,显示的目标位置一般较前次准确。
4)作业人员继续移动瞄准目标,获取5-8个状态正常的GPS卫星观测数据、测距数据、姿态数据和状态数据。外业工作结束。
5)导入GPS基准站数据进行数据处理,精确解算目标的三维坐标。
测距定位系统实时定位的技术:第一步,外业测量,采集GPS数据、三维数字罗盘数据和激光数据,并将这些数据存储于激光测距仪中;第二步,利用单点定位算法对测站点坐标进行解算,给出测站点的三维坐标,并在界面上显示坐标信息;第三步,对数据进行实时质量控制,初步剔除粗差及无效的观测量;第四步,联合GPS数据、三维数字罗盘数据和激光数据共同解算目标点坐标,在界面上显示目标点粗略的三维坐标。 2100433B
激光测距仪
激光测距仪 激光测距仪是利用 激光 对目标的距离进行准确测定的仪器。 激光测距仪在工作时向目 标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发 射到接收的时间,计算出从观测者到目标的距离。 若激光是连续发射的,测程可达 40 公里左右,并可昼夜进行作业。若激光是脉 冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。 世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于 1960 年,首先研 制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。 1961 年,第 一台军用激光 测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实 用联合体。 激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距 仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量, 坦克 ,飞机,舰 艇和火炮对目标的测距,测量云层、飞机
矿井脉冲激光测距仪综述
摘要:本文是对一种满足矿井建筑和生产掘进对距离测量需求的小型化高精度脉 冲激光测距仪进行大概论述。 它为在煤矿工作的一线人员提供一种满足矿井建筑 和生产掘进对距离测量需求的小型化高精度激光测距仪。 在研究中,创新性地提 出了一种高精度的时间测量方法, 采用脉冲式激光测距方法, 成功研制出一种“高 精度实时激光测距系统”,该测距系统在无合作目标的情况下可实现双向同时测 量,测量范围单向 30 米、测量精度 1厘米。并针对发射电路、接收电路以及时 间测量电路方面提出了优化设计, 从而设计出了一种体积小、 价格低、操作方便 符合防爆要求的高精度矿用激光测距仪。 关键词: 矿井;脉冲激光测距;高精度;防爆。 引言: 国外的发展 : 自从 1961 年美国休斯飞机公司研制成功世界上第一台激光 测距机后,有关激光测距技术的研究一直是激光应用领域的热门课题。 国外许多 大学、研究机构和公司都开展了这
测距仪的测距精度也有标称精度和实际精度之分。对于标称精度,和全站仪测距标称精度理解上一致。对于实际精度,和全站仪测距精度理解上一致。
电磁波测距有两种方法:脉冲测距法和相位测距法。
由测线一端的仪器发射的光脉冲的一部分直接由仪器内部进入接收光电器件,作为参考脉冲;其余发射出去的光脉冲经过测线另一端的反射镜反射回来之后,也进入接收光电器件。测量参考脉冲同反射脉冲相隔的时间t,即可由下式求出距离D: ,式中 c为光速。卫星大地测量中用于测量月球和人造卫星的激光测距仪,都采用脉冲测距法。
用高频电流调制后的光波或微波从测线一端发射出去,由另一端返回后,用鉴相器测量发射波与回波之间的相位差嗘。若调制频率为f,则电磁波往返经历的时间为: ,式中n是时间t中的整周数。将 t代入到上列脉冲测距法的公式中,得距离D为: ,式中λ是已知的调制波波长相当于测量距离的尺子的长度,n相当于测程上的整尺数是不足一个测尺长的尾数。
为了确定整尺数n,通常采用可变频率法和多级固定频率法。前者是使测距仪的调制频率在一定范围内连续变化,这就相当于连续改变测尺长度,使它恰好能量尽待测距离。测距时,逐次调变频率,使不足整尺的尾数等于零。根据出现零的次数和相应的频率值,就可以确定整测尺数n°当采用多级固定频率法时,相当于采用几根不同长度的测尺丈量同一距离。根据用不同频率所测得的相位差,就可以解出整周数n,从而求得距离D。
相位差除了用鉴相器测量之外,还可采用可变光路法,即用仪器内部的光学系统改变接收信号的光程,使该信号延迟一段时间。电子仪表指示发射信号与接收信号相位相同时,直接在刻划尺上读出尾数。此外,还可以用延迟电路来改变接收信号的相位,由该电路调整控制器上的分划,读出尾数。
对于具体某一台仪器来说,通常使用加常数和乘常数。另外测距综合精度按照标准基线测距后采用最小二乘法回归得到,现在一般按照JJG100-2003和JJG703-2003规程进行检定。