选择特殊符号
选择搜索类型
请输入搜索
磁控电抗器用作无功补偿可以平滑的调节输出的无功,比一般的无功补偿设备具有更多的作用。
(1) 提高功率因子,降低网损,可以使功率因子达到0.9-0.99的要求
(2) 阻尼系统振荡,提高阻尼极限,提高输电线传输能力
(3) 提高电网的电压稳定能力
(1) 稳定端点电压(防止电压过高或过低),提高变压器与输电线以及其他电器设备的寿命。
(2) 消除谐波污染,提高系统安全系数,延长设备寿命,降低系统损耗
(3) 降低异步电机启动、电弧炉运行等本地电网冲击,提高系统安全性,对于弱电网尤其如此。
(4) 消除电压闪变,专门针对闪变设计的算法,将电压闪变降至最低水平,提高用户电能质量。
(5) 扩容。在很多场合安装动态无功补偿装置,可以实现1.2-1.5倍的扩容,大幅节约扩容开支。
(6) 提高功率因子。可以使功率因子达到0.9-0.99的要求,降低网损,降低无功损耗,节省电费开支,适 用于电力系统庞大网损非常严重的用户。
磁控电抗器由控制部分和电抗器本体组成,原理图(单相)如下,该电抗器的主铁芯中间部分是长度为L的小截面段,上下两个半芯柱上分别对称地绕有匝数为N/2的绕组;每一铁芯柱的上(下)绕组有一抽头比为δ=N2/N的抽头,它们与各自铁芯柱的下(上)绕组的首(末)端之间接有晶闸管K1和K2,不同铁芯的上、下两个绕组交叉联接后并至电网,二极管D则横跨在交叉端点用于续流。当晶闸管K1、K2均不导通时,可控电抗器相当于空载变压器,容量很小;若在电源电压的正负半周内轮流触发导通K1、K2,则可在绕组回路中产生一定大小的直流偏磁电流,其在两并联绕组中自成回路,不流向外部电路。该控制电流所产生的直流磁通使工作铁芯柱饱和,可控电抗器等值容量增大。调节晶闸管触发延迟角的大小可以改变铁芯磁饱和度,从而达到控制电抗器容量的目的。
由于电力系统的需求,可控电抗器一直以来就是一个研究热点,其中前苏联科学家提出的借助直流控制的磁饱和型可控电抗器得到了推广和应用。该类电抗器是借助控制回路直流控制电流的激磁改变铁心的磁饱和度,从而达到平滑调节无功输出的目的。它是在磁放大器的基础上发展起来的。早在1916年就由美国的E.F.W亚历山德逊提出了“磁放大器”的报告。到了40年代,随着高磁感应强度及低损耗的晶粒取向硅钢带和高磁导、高矩形系数的坡莫合金材料的出现,将饱和电抗器的理论和应用提高到了一个新水平,1955年世界上第一台可控电抗器在英国制造成功,其额定容量为100MVA,工作电压为6.6 ~22 。20世纪70年代以来,由于可控硅器件迅速发展及相控电抗器的出现,可控电抗器被打入“冷宫”。随着电力工业的高速发展,人们对供电质量及可靠性的要求越来越高。由此产生了一系列问题:超(特)高压大电网的形成及负荷变化加剧,要求大量快速响应的可调无功电源来调整电压,维持系统无功潮流平衡,减少损耗,提高供电可靠性。20世纪70年代以来发展起来的相控电抗器(TCR)高昂的造价决定了其在电力系统中广泛应用的不合理性。鉴于上述原因,电力专家们转而寻求更加经济和可靠的可调无功补偿装置。
1986年,原苏联学者提出了磁阀式可控电抗器的新型结构,从而使得可控电抗器的发展有的突破性进展。新型可控电抗器可以应用于直到1150KV 的任何电压等级的电网作为连续可调的无功补偿装置,因而可直接接于超高压线路侧,同时发挥同步补偿机和并联电抗器的作用。
电容补偿柜可以有效起到提高电网功率因数,节约电能,提高供电质量的作用。襄阳赛克斯电气股份有限公司(简称SEC公司)现已形成以电机起动、补偿、节能、调速和控制;高低压成套设备;工业自动控制设备、建筑电器...
通过改变磁芯的磁场强度达到改变其电抗值的目的,磁场的变化引起磁芯饱和度的改变,从而达到控制MCR的目的。铁芯饱和的时间周期是控制的重要参数可完成0.01~1.00倍的额定功率的调节,对于各种不同类型的...
检漏继电器应用附加直流电源检测原理,具有3项必备功能:1.监视电网对地绝缘水平;2.一旦漏电,迅速跳闸;3.加设零序电抗器(类似消弧线圈)补偿低压电网对地电容性电流等。 低压选漏保护装置基本上都是采用...
基于MCR的SVC装置是电气化铁路牵引变电站实现对负荷的跟踪控制、提高功率因数的最佳方案。由于电气化铁道牵引变电站的负荷具有瞬时性,当电力机车驶过时,负荷突然出现,列车过后,负荷消失,采用传统的开关投切电容器将会出现一个牵引变电所每天出现上百次的开关投切动作,严重地缩短电气设备的使用寿命,并且电气化铁道的不对称造成其负序分量很严重。将基于MCR的SVC装置用于牵引变电站供电的变电站,可有效的减小不对称,降低负序分量,消除电网的安全隐患。
在我国的煤炭企业中存在大量的提升机等间隙性冲击负荷,不仅无功波动较大而且谐波污染严重,如果不对这些问题进行处理,将会导致电能质量低下且谐波污染严重,并导致功率因数以及谐波超标罚款,采用电容投切时无功补偿装置时会出现两种情况:当无功或功率因数设置过小时虽然能保证这些提升设备工作期间不频繁投切,但会造成此时井下的电气设备供电电压突然降低,影响电气设备及其保护控制设备正常工作;如果无功或功率因数设定值较高,则会出现电容器组频繁投切现象,容易造成电气设备的损坏,影响电气设备的使用寿命。采用MCR型高压动态无功补偿装置是解决这个问题的理想解决方案。
此外,在煤炭与化工企业,由于存在着一些危险因素(如煤井下的瓦斯气体、化工厂的易爆炸性气体),采用传统的开关投切方式由于投切过程中机械动作时产生火花、电容器组受冲击易损坏等诸多因素,使得在这些环境中工作时的安全性降低,而采用磁控电抗器的静态无功补偿装置由于不进行任何的机械操作,可以在危险环境中安全工作20年以上。
冶金系统中的轧机与电弧炉负载是一种及其特殊的负荷,它能够在极短时间(小于1s)内负荷从很小的值变化的非常大的值,并且变化频率很快,这样会造成这些企业内的显示仪表在不停地高速摆动,无法读数,而且其工厂内照明灯不停地闪动,采用传统的电容投切式无功补偿装置无法解决这个问题,采用自耦变压器型动态无功补偿装置也无法解决这个问题,只有采用基于磁控电抗器的静态无功补偿装置或采用TCR型静态无功补偿装置才能解决。基于MCR的SVC装置是冶金系统中的轧机与电弧炉供电系统无功补偿的较为理想选择,MCR快速的响应能力为这些系统提高功率因数,改善电能质量提供了保证,高度的可靠性以及优异的工业性能,为供电系统的安全、可靠运行提供了保障,高的可利用率提高了生产效率、质量和效益,极长的设备使用寿命确保了长远的回报。与传统的用于轧机与电弧炉补偿的其它高压无功补偿装置比起来,MCR型SVC具有可靠性高、基建成本低、占地面积小、维护成本低、设备造价合理等明显的优点。
基于MCR的SVC装置应用于风电场变电站无功的连续、无触点、动态调节,提高系统的功率因数,减少风电场电网接入点与电网的无功交换直至为0,实现系统无功动态平衡,达到风电场接入电网国家标准的要求。滤除谐波电流,使风电场谐波电流和谐波电压达到国标要求。MCR型SVC还可起到抑制电网电压波动,稳定电压的作用,并降低电能质量对风力发电机组的不良影响,当系统发生电压跌落时,快速调整无功输出,促进电压恢复。考虑到风电场地理位置偏僻,运行环境恶劣,维护人员很少等特点,MCR型高压动态无功补偿装置是风电场实现动态无功补偿的理想选择。
对于我国大量的变电站而言,电容器利用率低,投切管理麻烦的问题广泛存在,现在安装的大量VQC装置,虽然可以对变压器有载调压开关和电容器组以及电抗器投切开关进行自动控制,但是,很容易导致电容器组投切动作频繁,有载调压开关动作频繁等问题,降低了设备寿命,增加了安全隐患。在现有无功补偿系统的基础上加装MCR,将大大提高无功补偿效果,减少甚至避免投切操作、节能降耗、改善电能质量。在枢纽变电站安装MCR型动态无功补偿装置还可大幅提高电网暂态稳定能力,提高电网电压稳定水平。
一些纺织企业(如丝绸纺织厂)、显像管制造厂(如安彩),其加工出的产品质量与电网的电压质量要求很高,电压质量突降或瞬间跌落会造成其产品中出现大量的废品,采用MCR型静态无功补偿装置可以在很短时间内改善其电压质量。
武汉大学于20世纪90年代初开展了MCR方面的研究,已成功地研究出了应用于配电网的磁阀式补偿装置和消弧线圈,并在几个电气化铁道牵引站中投运(容量在4.5 Mvar以下)。上海交通大学、华北电力大学、浙江大学和华中科技大学也展开了这方面的研究,并获得了较大进展。中国电力科学研究院联合沈阳变压器厂展开了对超高压MCR的研究,2006年研制出了500kV三相40Mvar的MCR样机已通过厂内试验,2007年4月运抵湖北现场。
近年来,随着国家发展智能电网战略的提出,对于MCR的需求不断加大,MCR的发展会更加迅速。
一种复合式磁控电抗器励磁系统
1前言努力提高磁控电抗器的响应速度是磁控技术发展的迫切需要。近年来,各个磁控电抗器生产厂家、科研部门及大专院校相继推出了各种不同的励磁方案,总体看来是各有利弊。本文中介绍一种复合式磁控电抗器励磁系统,该励磁系统具有快速正向励磁和反向强制退磁的双重功能,可以将磁控电抗器的响应时间由几百毫秒缩短至30毫秒~40毫秒。一个完整的励磁系统应包括励磁执行系统和励
磁控电抗器安装使用说明书
uarantee for t he great str uggle. T his aspe cts XI General Se cretary of spee ch mai n including exer cise t hrift, against extravagance mass l ine i s party of lifeline a nd fundame ntal work r oute a ccurate grasp party of mass line education pra ctice activities of gui deline and target requirements set and develop "t hree stri ct three r eal" of style put power shut into system of cage i n
关于磁控电抗器磁阀重点参数的计算
Calculation on the Key Parameters of the Magnetic Valve Controllable Reactor
磁控电抗器因其独特的优点在电力系统无功补偿等方面得到了越来越多的应用,其原理是通过改变磁阀小截面处等效磁导率来平滑调节电抗,因此磁阀的设计对磁控电抗器的运行性能就有着重要的影响。本文从电抗器运行原理及过程状态出发,通过等效磁路对磁控电抗器磁阀重点参数进行了计算,并使用Matlab Gui实现程序的编写和界面的实现,最后针对设计结果进行Ansoft仿真,进一步验证了设计的正确性。
Magnetic controlled reactor because of its unique advantages for reactive power compensation has been more and more applications, the principle is the smooth adjustment by changing the effective permeability of the small sec- tion of the reactor, so the design of the small section has an important effect on the operating performance of the mag- netic controlled reactor. Through the operating principle of the reactor and the process state, calculate the magnetic con- trolled reactor key parameters by an equivalent magnetic circuit, and procedures for the preparation and interface using Matlab Gui, finally verify the design results by the MagNet simulation.2100433B
磁控电抗器是利用直流助磁的原理,即利用附加直流励磁,磁化电抗器铁心,通过调节磁控电抗器铁心的磁饱和程度,改变铁心的磁导率,实现电抗值的连续可调。
在电抗器的整个容量调节范围内,仅有小截面段的铁心磁路工作在饱和区,而大截面段始终工作于未饱和线性区。左图为铁心磁化曲线示意图,曲线中间部分为未饱和线性区,左、右两边为极限饱和线性区。若使电抗器工作在极限饱和线性区,不仅可以减小谐波含量,同时亦能大幅减低铁心磁滞损耗,电抗器铁损控制在理想状态。
右图为电抗器外加交流电压时的两种工作状态。当电抗器绕组接至电源电压时,在可控硅T1、T2两端感应出电压。该电压正半周触发导通可控硅T1,在回路中产生直流控制电流;电源电压负半周期触发导通可控硅T2,也在回路中形成直流控制电流,使电抗器工作铁心饱和,输出电流增加。可控电抗器输出电流大小取决于晶闸管控制角α,α越小,产生的控制电流越强,从而电抗器工作铁心磁饱和程度越高,输出电流越大。因此,改变晶闸管控制角,可平滑调节电抗器容量。
自主研发生产的HDQ型自励磁阀式高压大电机软起动装置、QMCR型高压快速磁控电抗器动态无功补偿节能装置,属国际首创,性能优良。另已成功开发出既具有高科技含量又具有广泛应用领域的磁控电抗器系列产品,已应用在国家电网、风电场、电气化铁路、冶金、石化、煤炭系统等重要领域,取得了丰硕的成果。是智能电网电压调节、无功控制的必备产品。
公司通过了ISO9001:2000质量管理体系认证,产品通过了国家电力工业电气设备质量检验中心的检验。公司拥有多项国家专利和一项注册商标。