选择特殊符号
选择搜索类型
请输入搜索
碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的 C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达 5TPa,强度约为钢的 100 倍,而重量密度却只有钢的 1/6。Treacy 等首次利用了 TEM 测量了温度从室温到 800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为 1.8Tpa。而 Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为 1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为 14.2±10.8GPa,而碳纤维的弯曲强度却仅有 1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的"超级纤维"。
1985 年英国萨塞克斯大学的波谱学家 Kroto 教授与美国莱斯大学的 Smalley和 Curl 两教授在合作研究中,发现碳元素可以形成由 60 个或 70 个碳原子构成的高度对称性笼状结构的 C60和 C70分子,被称为巴基球(Buckyballs)。1991 年,日本 NEC 科学家 Iijima 在制取 C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为 515nm、内径为 213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管。随后在 1993 年,Iijima和 Bethune研究小组同时报道合成了结构十分简单的单壁碳纳米管,这为理论预测碳纳米管的性能提供了实验上的可能性,进一步拓宽了碳簇材料的范围,也极大地促进了对碳纳米管的理论和实验研究,使得该领域成为如今全球研究的一个热点 。
人们预言碳纳米管可能成为一种新型的高强度碳纤维材料,既具有碳素材料的固有本性,又具有金属材料的导电和导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性,以及高分子材料的轻质、易加工性。将碳纳米管作为复合材料增强体,预计可表现出良好的强度、弹性、抗疲劳性及各向同性,可以预期碳纳米管增强复合材料可能带来复合材料性能的一次飞跃。用纳米管制作复合材料的研究首先是在金属基上进行的,如:Fe/碳纳米管、Al/碳纳米管、Ni/碳纳米管、Cu/碳纳米管等。碳纳米管复合材料的研究重心已转到高分子/碳纳米管复合材料方面,如在轻质高强度的材料中,使用碳纤维作为增强材料,碳纳米管的机械性能及其小的直径和大的长径比将会带来更好的增强效果。
碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的 C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。
一样,没有区别。 碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon &n...
一样,没有区别。 碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon nanotubes, SWCNTs)和多...
碳纳米管论文
碳纳米管看及其产业化 姓名:刘佳 班级:化学二班 学号: 2008600213 在 1991 年日本 NEC公司基础研究实验室的电子显 微镜 专家饭岛 (Iijima) 在高 分辨透 射电子 显微镜 下检验 石墨电 弧设 备中产 生的球 状碳分 子时,意外 发现了由管状的同轴纳米管组成 的碳分子 ,这就 是现在被称作的 “ Carbon nanotube”,即碳 纳米管 ,又名巴基 管。 1993 年。 S.Iijima 等和 DS。 Bethune 等同时 报道了采用电弧法,在石 墨电极中添加 一定的催化剂,可以得到仅仅具 有一层管壁的碳纳米管,即 单壁碳纳米管 产物。 1997 年,AC.Dillon 等报道了单壁碳纳米管的 中空管可储存和稳定氢 分子,引起广 泛的关注。相关的实验研究和理 论计算也相继展开。初步结 果表明:碳纳 米管自身重量轻,具有中空的结 构,可以作为储存氢气的优
多壁碳纳米管/聚氯乙烯复合材料的制备
文章阐述了通过溶液混合法制备多壁碳纳米管/聚氯乙烯复合材料,并对其性能进行了红外表征,表明制得的复合材料具有良好的性能。
纳米管的类别有:硅纳米管、单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、功能化多壁碳纳米管、短多壁碳纳米管、工业化多壁碳纳米管、石墨化多壁碳纳米管、大内径薄壁碳纳米管、镀镍碳纳米管。陨石碳质晶体纳米管。
碳纳米管的电学性能包括导电性能和超导特性两个部分,其中前一部分研究得最多。理论与实验均证实碳纳米管的导电性质与其微结构有着密切的关系。早期的实验发现,一些碳纳米管应是金属或窄能隙的半导体。1996年,Langer等人开始用两电极法研究单根多壁碳纳米管的输运特性,而Ebbesen等人为了避免样品的不良电接触,改用四电极法测量了单根多壁碳纳米管的电学特性。从单根多壁碳纳米管的电阻R来看,它们的差别确实很大,有些碳纳米管属于金属,而另一些属于半导体。一些研究组的实验显示,碳纳米管的电学性能与螺旋度有密切关联。
碳纳米管最令人瞩目的热学性能是导热系数。理论预测碳纳米管的导热系数很可能大于金刚石而成为世界上导热率高的材料。不过,测量单根碳纳米管的导热系数是一件很困难的事情,2014年还没有获得突破。将电弧法制备的单壁碳纳米管轧成相对密度为70%,尺寸为5mm×2mm×2mm的方块,Hone测得了室温下未经处理的碳纳米管块材的导热率为35W/(M·K),该值远小于理论预测值。显然,碳纳米管块材中的空隙和碳纳米管之间的接触都将极大地减小碳纳米管块材的导热率。而且,与石墨相类似,碳纳米管沿轴方向与垂直于轴向方向的导热能力应有很大的不同。因此,该结果不能代表碳纳米管的实际热率。正如单根碳纳米管的电导率是碳纳米管管体材料的电导率的50-150倍一样,如果单根碳纳米管的电导率也是如此,那么碳纳米管的导热率应为1750-5800W/(M·K)。通过测量碳纳米管块材的导热率与温度的关系曲线可以推断,碳纳米管的导热是由声子决定的,并就此估计出碳纳米管中声子的平均自由程约为0.5-1.5μm。
利用X射线衍射和透射电子显微镜研究纳米碳管在5.5Gpa下的热稳定性也取得了重要进展。根据以往的研究,在常压真空条件下碳纳米管的热稳定性非常好,其结构在2800℃以下可能并不发生变化。实验发现,在5.5Gpa压力下,虽然碳纳米管的微结构在低温时没有发生明显的改变,但在950℃即开始发生变化,转变成类巴基葱和类条带结构,而在1150℃时转变成石墨结构,高压是这种转变的主要原因,高压可以促使碳纳米管结构的破裂,从而降低它的热稳定性。