选择特殊符号
选择搜索类型
请输入搜索
棕黑色晶体粉末。不溶于水和酸。在硝酸中分解。
密度:6.20
熔点:1041℃
禁带宽度:1.46 eV
碲化镉作为一种重要的Ⅱ—Ⅵ族化合物半导体材料,晶体结构为闪锌矿型。具有直接跃迁型能带结构,晶格常数0.6481nm,禁带宽度1.5eV(25℃),室温电子迁移率1050Cm2/(V s),室温空穴迁移率80Cm2/(V s),电子有效质量0.096。
CdTe可以通过掺入不同杂质来获取n型或p型半导体材料。当用In取代Cd的位置,便形成n型半导体。当用Cu、Ag、Au取代Cd的位置,形成p型半导体。对于CdTe单晶,1017 cm-3的掺杂浓度是可以得到的,更高浓度的掺杂以及精确控制掺杂浓度比较困难,特别是p型掺杂,杂质在CdTe晶体中的溶解度极低。
CdTe具有很高的光吸收系数(>5×105/cm),仅仅2 μm厚度的CdTe薄膜,在标准AM1.5条件下光学吸收率超过90%,最高理论转换效率高达28%。
Ⅱ-Ⅵ族化合物半导体材料是重要的半导体材料,至今难以制成大直径体单晶,许多材料多作成外延薄膜。已获重要应用的有碲化镉、硫化镉、硒化锌、硫化锌以及本族的固溶半导体材料碲镉汞(Hg1-xCdxTe)等。
化学式CdTe,分子量240.00,有一定肝肾毒性。熔点1041℃,温度更高即分解,相对密度6.2015。不溶于水、酸,但能与硝酸作用而分解。潮湿时易被空气氧化。制法:由碲、镉单质混合熔化,在氢气流中升华,或镉的亚碲酸盐或碲酸盐在氢气流中加热还原,也可由碲化钠与被醋酸酸化的醋酸镉溶液作用,当从溶液中沉淀出时呈褐红色,干燥后几乎变成黑色,还可用碲化氢作用于镉蒸气,形成碲化镉单晶而得。以高纯碲和镉为原料,脱氧后合成碲化镉,再用垂直定向结晶法或垂直区熔法生长成单晶或多晶。
清单的性质是 通过制定统一的建设工程工程量清单汁价方法,达到规范计价行为的目的。这些规则和办法是强制性的,工程建设各方面都应该遵守。主要体现在:一是全部使用国有资金或国有资金投资为主的大中型建设工程...
为白色的粉末,或凝聚成不规则的块状,手捻之立即成粉,有细而滑腻感。质重。以色白细腻,无杂质者为佳。不溶于水及酒精.能溶于碳酸水及稀硝酸。遇硫离子则变黑色。在闭管中燃烧则生水,在木炭上燃烧则生铅粒。
丙烯酸 英文名称: acrylic acid 英文名称2: propenoic acid CAS No.: 79-10-7 分子式: C3H4O2 结构简式:CH2CHCOOH ...
光谱分析。CO2激光器的Q调制。也用于制作太阳能电池,红外调制器,HgxCdl-xTe衬底,红外窗场致发光器件,光电池,红外探测,X射线探测,核放射性探测器,接近可见光区的发光器件等。
碲化镉太阳能电池,较单晶硅太阳能电池有制作方便,成本低廉和重量较轻等优点。碲化镉薄膜太阳能电池简称CdTe电池,它是一种以p型CdTe和n型CdS的异质结为基础的薄膜太阳能电池。一般标准的碲化镉薄膜太阳能电池由五层结构组成:背电极、背接触层、CdTe吸收层、CdTe窗口层、TCO层。
碲化镉薄膜太阳能电池的生产成本大大低于晶体硅和其他材料的太阳能电池技术,其次它和太阳光谱很一致,可吸收95%以上的阳光。在广泛深入的应用研究基础上,国际上许多国家的CdTe电池已由实验室研究阶段开始走向规模工业化生产。
此外,碲化镉半导体可用于光谱分析、红外电光调制器、红外探测器、红外透镜和窗口、磷光体、常温γ射线探测器、接近可见光区的发光器件等。
碲化镉太阳能电池 (2)
碲化镉太阳能电池 (2)
(
除在太阳能的应用外,碲化镉也可与汞形成HgCdTe合金,可应用在红外线侦测器的感光材料,但也因碲化镉的毒性问题,应用范围未能普及。
如同其他镉化合物般,碲化镉被认为是有毒物质,但只要不经口服或呼吸方式进入人体,碲化镉对人体的危害有限。
美国能源部指出,碲化镉太阳能模组只要经过适当回收程序处理,并不会对环境产生危害,其对环境的影响与镉金属完全不同。因此,CdTe太阳能模组在正常使用下,对环境的助益甚至大过于对环境的威胁。
过去以生产传统硅太阳能面板为主的美商奇异(GE),未来将使用和美国太阳能业者First Solar相同的原料,转进薄膜太阳能电池领域。
尽管碲化镉技术的转换效率低于晶硅太阳能电池,然奇异表示,当同时考量转换效率、氧造成本及原物料成本等因素后,碲化镉技术拥有比其他薄膜太阳能技术更佳的成本结构,此为奇异选择发展碲化镉技术的主因。
据悉,碲化镉太阳能电池的制造成本低,目前已获得的最高效率为16%,是应用前景很好的太阳能电池。
碲化镉薄膜太阳能电池的发展日益受到重视。碲资源、电池成本、电池生产和使用对环境的影响等问题是碲化镉薄膜太阳能电池发展中受到很多人关注的问题。本文对此进行了分析讨论,最后分析了工业化规模生产碲化镉薄膜太阳能电池组件的关键技术。
碲化镉薄膜太阳能电池的发展受到国内外的关注,其小面积电池的转换效率已经达到了16.5%,商业组件的转换效率约9%,组件的最高转换效率达到11%。国内四川大学制备出转换效率为13.38%的小面积单元太阳能电池,54cm2集成组件转换效率达到7%,正在进行0.1┫组件生产线的建设和大面积电池生产技术的研发。
成本估算
考虑电池的结构为玻璃/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni,碲化镉薄膜的厚度为5微米,转换效率为7%,1MW碲化镉薄膜太阳能电池所消耗的材料的成本如下表所示
可见,碲化镉和透明导电玻璃构成材料成本的主体,分别占到消耗材料总成本的45.4%和38.2%。
消耗材料的成本还可以进一步降低,如将碲化镉薄膜的厚度减薄1微米,则碲化镉材料的消耗将降低20%,从而使材料总成本降低9.1%,即从每峰瓦6.21元降为5.64元。如使用99.999%纯度的碲化镉,效率依然能达到7%,材料成本还将进一步降低。因此,材料成本达到或低于每峰瓦5元人民币是可能的。
考虑工资、管理、电力和设备折旧等其他成本,碲化镉薄膜太阳能电池的成本大约是每峰瓦13.64元人民币或更低。因此,即使销售价格为每峰瓦20~22元人民币,约为晶体硅太阳能电池现在价格的60%,也能保证制造商有相当的利润空间。
由于碲化镉薄膜太阳能电池成本低,其发展对于解决我国西部地区分散居住人口的电力供应具有重要意义。
碲资源
碲是地球上的稀有元素,发展碲化镉薄膜太阳能电池面临的首要问题就是地球上碲的储藏量是否能满足碲化镉太阳能电池组件的工业化规模生产及应用。工业上,碲主要是从电解铜或冶炼锌的废料中回收得到。据相关报道,地球上有碲14.9万吨,其中中国有2.2万吨,美国有2.5万吨。
在美国碲化镉薄膜太阳能电池制造商First Solar年产量25MW的工厂中,300~340公斤碲化镉即可以满足1MW太阳能电池的生产需要。考虑到碲的密度为6.25g/cm3,镉的密度为8.64g/cm3,则130~140公斤碲即可以满足1MW碲。2100433B
碲化镉太阳能电池,亦称“碲化镉太阳电池”。以碲化镉薄膜为主要功能层的薄膜太阳能电池。主要由p型碲化镉、n型镉(硫化镉)薄膜、透明电极、背电极、玻璃基底等组成。其光吸收率高,转换效率高,性能稳定,生产成本远低于其他材料的太阳能电池,便于规模化生产,有望成为未来的主导新能源之一。
碲镉汞探测器(Mercury telluride detector)是指用碲镉材料制备的光电转换器件。该探测器属本征探测器,有光导 。