选择特殊符号
选择搜索类型
请输入搜索
从AS1.1084分离带有色氨酸操纵子的F质粒,Smal酶切与Smal酶切的pBR322 DNA相连,构成带有色氨酸操纵子重组质粒pMDC21.BglⅡ酶切pDMC21,大片段自环化后,得到了带有L-色氨酸合成酶基因(TrpAB)的衍生质粒pYNC51.这种构建方式尚未见报道.在基础培养基培养时,以AS1.1044和AS1.1042作宿主菌株为好,培养100代质粒稳定程度分别为100%和98%.摇瓶培养工程菌M151(pYNC51),以基础培养基1号为好,菌体浓度为4.5,比酶活为9.9.培养基的起始pH6.5-8.5均可,随着起始葡萄糖浓度增加,菌体浓度逐渐下降,而酶活力却逐渐上升.种子接种量以10%效果为好.细胞转化5%的吲哚和L-丝氨酸,产L-色氨酸相当于88.3克/升.
批准号 |
59608007 |
项目名称 |
大跨度斜拉桥斜拉索及其系统的振动主动控制 |
项目类别 |
青年科学基金项目 |
申请代码 |
E0804 |
项目负责人 |
王代华 |
负责人职称 |
教授 |
依托单位 |
重庆大学 |
研究期限 |
1997-01-01 至 1999-12-31 |
支持经费 |
12(万元) |
套公路工程预算定额 :索塔定额适用于斜拉桥、悬索桥。
http://www.wst.net.cn/history/9.15/1993_1.htmhttp://www.chinataiwan.org/web/webportal/W4602056/Uadmi...
关于大跨度拱桥规范定义可参见《城市桥梁抗震设计规范》 CJ 166-2011 第三节 基本要求中条文3.1.1 的条文说明部分:跨度大于150m的拱桥定义为大跨度拱桥。
斜拉桥斜拉索常见的病害及处理建议
斜拉桥斜拉索常见的病害及处理建议 曹泽峰 (1103315-01) 摘 要:通过对影响拉索索体长效使用的质量因素进行调查分析, 归纳总结斜拉桥拉索在设计、 施工、养护阶段出现的主要病害如 PE护套开裂,索丝腐蚀断裂,锚具腐蚀、疲劳开裂等,并 对病害的产生原因进行分析。 关键词:斜拉桥;斜拉索;锚头;锈蚀; PE护套;病害分析;维修养护。 中图分类号 :U44 中文标识码: A 1、引言 近30多年来 ,我国已建成斜拉桥 100多座 ,是世界上斜拉桥最多的国家 ,特别是在跨径为 200m~600m范围内 ,斜拉桥是最具竞争力的桥型。 但使用几年后 ,随之而来的因各种原因进行的 换索工程费用占桥梁原造价的 50%以上。目前国内大部分非新建斜拉桥基本都经历了换索 ,那 么,新建斜拉桥如何提高斜拉索使用时效与降低换索难度 ,成为关注重点。下面就斜拉桥拉索为 对象 ,分析斜拉索索体的主要受损原
矮塔斜拉桥斜拉索施工工法
矮塔斜拉桥斜拉索施工工法;一、前言;“矮塔斜拉桥”也称“部分斜拉桥”,介于“斜拉 桥”;二、工法特点; 1.工序简单,施工进度快; 2.施工条件得到了改善,劳动强度低,安 全性强; 3.索塔内鞍座采用分丝管, 可以实现单根换索; 4.采用单根等值法张拉, 可以控制 每根斜拉索各股钢; 5.可以实现一对斜拉索对称、交叉单根张拉,同步整; 6.采用 JMM-268 动测仪进行索力监控,可 矮塔斜拉桥斜拉索施工工法 一、前言 “矮塔斜拉桥”也称“部分斜拉桥”,介于“斜拉桥”与“体外预应力箱梁 桥”之间,起源于日本,在国外发展很快,在国内来说是新桥型。兰州某黄河大 桥是国内第二座矮塔部分斜拉桥,某第四工程公司采用等值张拉工艺施工斜拉 索,并首次采用了分丝管和抗滑锚新技术, 保证了斜拉索的安装精度和施工质量。 开发研究的“双塔单索面预应力混凝土部分斜拉桥施工技术” 通过了甘肃省科技 厅科技成果鉴定,
该书内容包括:背景知识、声学和振动基础、频谱分析、模态分析、现代控制综述、前馈控制系统设计、管道噪声的主动控制等。
第1章 绪论
1.1 振动主动控制概述
1.2 振动主动控制技术研究现状与发展
1.3 精密隔振技术发展现状
第2章 振动系统建模
2.1 振动系统建模概述
2.1.1 振动系统建模的基本概念
2.1.2 描述振动系统的方法
2.2 振动系统建模
2.2.1 单自由度振动系统
2.2.2 多自由度振动系统
2.2.3 弹性体系统
2.2.4 非线性系统
2.3 微制造平台主动隔振系统
2.3.1 微制造平台隔振系统仿生原理设计
2.3.2 微制造平台主动隔振系统结构设计
2.3.3 微制造平台主动隔振系统振动模型及其动力学方程
2.4 空气弹簧及其振动模型
2.5 实验模态分析
第3章 振动主动控制系统的动力学分析
3.1 致动器与传感器的优化配置
3.1.1 致动器的优化配置
3.1.2 传感器的优化配置
3.2 双层隔振系统致动器安装方式合理性分析
3.2.1 致动器仅作用于隔振对象时的动力学分析
3.2.2 致动器安装于中间质量与基础之间时的动力学分析
3.2.3 致动器安装于隔振对象与中间质量之间时的动力学分析
3.3 精密隔振系统的振动传递率
3.3.1 单个干扰作用下的振动传递率
3.3.2 复杂激励环境下的振动传递率
3.4 基于遗传算法的主动控制系统反馈参数优化
3.4.1 主动控制系统优化模型
3.4.2 基于遗传算法的主动控制系统反馈参数优化
3.4.3 主动控制系统反馈参数优化结果
第4章 超磁致伸缩致动器
4.1 超磁致伸缩材料
4.2 超磁致伸缩致动器的结构与磁路设计
4.3 超磁致伸缩致动器电磁特性的有限元分析
4.3.1 平面电磁场边值问题的有限元法
4.3.2 超磁致伸缩致动器的磁场有限元分析
4.4 超磁致伸缩致动器的工作特性
4.4.1 超磁致伸缩致动器的静态特性
4.4.2 超磁致伸缩致动器的动态特性
4.5 超磁致伸缩致动器的非线性模型与分析
第5章 振动主动控制算法的比较
5.1 PID控制
5.1.1 数字PID控制
5.1.2 微制造平台振动的PID控制仿真
5.2 LQG控制
5.2.1 LQG控制模型
5.2.2 微制造平台振动的LQG控制仿真
5.3 H□控制
5.3.1 H□控制理论
5.3.2 H□控制器的设计
5.3.3 微制造平台振动的H□控制仿真
5.4 模糊控制
5.4.1 模糊控制的基本概念
5.4.2 模糊控制器设计
5.4.3 微制造平台振动的模糊控制仿真
5.5 神经网络控制
5.5.1 神经网络控制模型
5.5.2 微制造平台振动的神经网络控制仿真
5.6 控制算法的比较
第6章 振动的模糊广义预测控制
6.1 广义预测控制理论
6.2 改进的自适应加权广义预测控制
6.2.1 改进的加权广义预测控制
6.2.2 自适应广义预测控制直接算法
6.3 模糊广义预测控制
6.3.1 模糊广义预测控制模型
6.3.2 加权系数调节器
6.4 振动的模糊广义预测控制律的设计
6.4.1 振动系统运动方程的离散化
6.4.2 振动系统模糊广义预测控制律的设计
6.5 振动控制系统稳定性分析
6.5.1 一步预测控制的稳定性分析
6.5.2 改进型加权广义预测控制的稳定性分析
6.6 微制造平台振动的模糊广义预测控制仿真
6.6.1 模糊广义预测控制仿真与性能分析
6.6.2 微制造平台振动的模糊广义预测控制仿真
第7章 微制造平台振动主动控制
7.1 微制造平台振动主动控制系统
7.2 微制造平台振动主动控制系统软件设计
7.2.1 操作系统与编程语言
7.2.2 振动主动控制软件的结构组成
7.3 微制造平台振动控制效果
7.3.1 正弦激励振动控制
7.3.2 随机干扰振动控制
第8章 镗削系统的切削稳定性及其颤振控制方法
8.1 镗削系统的切削稳定性分析
8.2 基于主轴变速方法的切削颤振控制机理
8.2.1 主轴变速对切削稳定性的影响
8.2.2 主轴变速对切削过程中颤振频率的影响
8.2.3 主轴变速方法对切削颤振的控制机理
8.3 结构刚度变化对镗削系统稳定性的影响
8.3.1 结构刚度变化对镗削系统稳定性影响的复平面表示
8.3.2 从稳定性极限图上看结构刚度变化对镗削系统稳定性的影响
8.3.3 结构刚度连续变化对切削颤振控制机理的研究
第9章 磁流变自抑振智能镗杆的工作机理及其设计优化
9.1 磁流变技术
9.2 磁流变自抑振智能镗杆的研制
9.3 磁流变液抑振单元的结构优化
9.3.1 磁流变液抑振单元的材料选择
9.3.2 磁流变液抑振单元的磁路系统建模
9.3.3 磁流变液抑振单元的结构参数优化
9.3.4 结构参数优化结果的仿真分析
第10章 磁流变自抑振智能镗杆的动力学模型
10.1 智能镗杆中磁流变液材料的动力学特性与本构模型
10.1.1 磁流变液材料的动态特性区划分
10.1.2 磁流变液材料动力学特性分析
10.1.3 基于Maxwell与Kelvin模型的磁流变液材料本构模型
10.1.4 磁流变液材料的动态本构特性分析
10.2 基于Euler-Bellaoulli梁模型的智能镗杆动力学特性分析
10.2.1 智能镗杆屈服前区的动力学特性分析
10.2.2 智能镗杆屈服后区的动力学特性分析
10.2.3 智能镗杆屈服时的临界条件
10.2.4 智能镗杆动力学特性仿真
10.3 基于Bouc-Wen模型的智能镗杆动力学模型
10.3.1 基于Bouc-Wen模型的智能镗杆动力学建模
10.3.2 基于Bouc-Wen模型的智能镗杆动力学模型相关参数识别
10.3.3 基于Bouc-Wen模型的智能镗杆动力学特性仿真
第11章 磁流变自抑振智能镗杆的控制策略
11.1 智能镗杆切削颤振控制的非线性随机最优控制策略
11.1.1 智能镗杆切削颤振控制的非线性随机最优控制律
11.1.2 受控智能镗杆系统的响应与性能准则
11.1.3 智能镗杆切削颤振控制的非线性随机最优控制策略的数值模拟
11.2 智能镗杆颤振抑制的变刚度控制策略
11.2.1 从能量角度分析变刚度控制策略对镗削系统稳定性的影响
11.2.2 变刚度控制策略的固有频率改变量参数的优选
11.2.3 变刚度控制策略的固有频率变化波形和频率参数的优选
第12章 磁流变自抑振智能镗杆的切削颤振控制实验
12.1 磁流变自抑振智能镗杆切削颤振控制实验平台
12.1.1 智能镗杆实验系统硬件配置
12.1.2 智能镗杆实验系统软件设计
12.2 基于非线性随机最优控制策略的颤振实验
12.2.1 加控制前后切削振动信号的时域和频域特性分析
12.2.2 非线性随机最优控制策略对颤振预防的作用
12.2.3 非线性随机最优控制策略的控制效果与效率
12.3 基于变刚度控制策略的颤振实验
12.3.1 变刚度控制策略的颤振抑制效果实验
12.3.2 控制信号幅值大小与变化波形优选实验
12.3.3 控制信号变化频率优选实验
参考文献
1 背景知识
2 声学和振动基础
3 频谱分析
4 模态分析
5 现代控制综述
6 前馈控制系统设计
7 管道噪声的主动控制
8 自由场中声辐射的主动控制
9 封闭空间声场的主动控制
10 梁和平板振动的前馈控制
11 基于模态表征的柔性结构反馈控制
12 隔振
13 若干电子实现问题
14 声源与声传感器
15 振动传感器与振源
附录 线性代数基础知识
英中文名词对照 2100433B