选择特殊符号
选择搜索类型
请输入搜索
交通运输部公路科学研究院、国家交通安全设施质量监督检验中心、北京中交华安科技有限公司等。
郭东华、王超、柯东青等。
本部分适用于反光布用玻璃珠的生产和使用。
1、玻璃珠还在医疗器械及尼龙、橡胶、工程塑料、航空等各领域作为一种新型的材料被广泛的使用。如作填加剂、增强剂等。 2、道路用玻璃珠主要应用于常温型及热熔型道路标线涂料中。分预混及面撒两种,预混型玻...
我就是生产加工玻璃珠的。先将玻璃粉碎成玻璃砂,然后用专业的炉将玻璃砂烧制成玻璃珠。
有机板有分类的:国产,合资,进口。价格都不同的.相对来说国产的最便宜但是材质较差,厚度也不足,5mm的只有4.2到4.5厚度。进口的最贵但是材质方面相对最好的厚度也足。同种规格的板差价大约有3到4倍....
JTT1035.3-2016道路逆反射材料用玻璃珠第3部分:反光布用玻璃珠
JTT1035.3-2016道路逆反射材料用玻璃珠第3部分:反光布用玻璃珠
路面标线用玻璃珠标准研究
·13·《交通标准化》 2010年10月下半月刊· 总第 231期TRANSPORT ST ANDARDIZA TION.2 HALF OF OCT ., 2010(No.231) 作者简介 :郭东华( 1974- ),男,副研究 员,主要从事交通工程产品的检测及科研 工作。 Research on Glass Beads for Road Markings 编者按 :本文阐述了国家标准 GB/T 24722-2009 《路面标线用玻璃珠》的 研制过程,并通过区分与交通行业标准 JT/T 446-2001 的差异性,全面介绍了 该标准的主要内容,有助于生产、施工、监理、检测、建设等单位更好地控 制玻璃珠的质量。 ◎文 / 郭东华 玻 璃 珠 是 路 面标线实现逆反射 功能的重要光学元 件。玻璃珠赋予标 线的逆反射特性, 可以为夜间行车提 供良好的道路线形 指引。同时,玻璃 珠的高耐磨性增强
对活塞、气门和缸盖等零件用玻璃珠喷丸清洗,证明最为有效喷丸处理的质量和程度决定于所用玻璃珠的尺寸、工作压力以及喷丸时间,
1.颗粒尺寸--对于活塞和其它类似零件,采用美国70号筛对于一般零件,采用60号筛
2,工作压力--对于活塞等零件为90磅/平方英寸(6.3公斤/平方厘米),对于一般零件为90-125磅平方英寸(6.3-8.8公斤/平方厘米)
3,被清洗的零件,暴露于玻璃珠喷流中不宜过长特别在清洗像铝那样的软质材料时更应如此
4.喷丸后,只需用溶剂再清洗一次和用压缩空气吹干就行重新装配前,必须确认发动机零件上所有异物都已清除干净
目前,逆反射效果的改善,主要是通过更合理的反光单元结构和更新的材料技术实现的。在这些新材料里,有塑料棱镜反射器,如自行车尾灯、车辆用反射片等,也有结构复杂的各种反光膜等。逆反射材料主要采用两种不同的技术原理实现光线的逆反射--玻璃珠技术和微棱镜技术。
玻璃珠型反光材料的反光原理,主要利用了玻璃珠的玻璃珠技术和玻璃珠背面基材的金属反射层。入射光经玻璃珠折射后,在反射层上聚集,再从这个聚集焦点,经过玻璃珠的第二次折射,返回光源方向。在实际应用中的玻璃珠逆反射材料除了玻璃珠和金属反光层以外,还包括了起保护作用的透明树脂表层膜和起安装作用的背胶。在这项技术里,玻璃珠的大小对整个反光亮度几乎没有影响,但玻璃珠的化学成分,或者更具体地说材质,会有很大的影响。这里包含有一个非常关键的参数就是玻璃珠的折射率,这个折射率会影响光线通过时的焦点的位置,焦点的位置必须有一个金属反光层让光线回到玻璃珠以后,才能实现光线的再次折射(角度导致其实际已经是反射)光线回到光源而完成整个逆反射过程。图17是大小一样但折射率不同的球体有不同的焦点。
玻璃珠的折射率、玻璃珠的粒径和光汇聚后形成的焦点位置(焦距)之间关系符合以下公式:
(公式1)
式中:f--汇聚光焦距即透镜中心到焦点的距离;
r--玻璃珠半径;
nd--玻璃珠的折射率。
由上述公式可见,玻璃珠的折射率和微珠的粒径对焦距的影响直接影响到反光材料的反光性能。玻璃珠背面的反射层一般为玻璃珠镀银,或镀铝。逆反射之所以也称回归反射,就是由于逆反射入射光和反射光位于法线同侧,其原理可从图19的定向反光光路图中看出。
当一束光Ⅰ射向玻璃珠时,在微珠表面P点发生折射,折射光在A点发生镜面反射,然后在P′点再发生折射,返回光源。由图19可知∠α=∠PAO(同位角),据反射定律n·sin∠PAO=n′sin∠P′AO,而在玻璃珠内部反射n=n′∴∠PAO=∠P′AO,由光路的可逆性n·sinα′= n′sin∠P′AO=n·sin∠PAO=n·sinα∴n·sinα′= n·sinα,即α=α′,则Ⅰ∥Ⅰ′。入射光Ⅰ平行于反射光Ⅰ′意味着一个反射单元对一平行光的反射光也将是一束平行光,而由于微珠很小,所以反射光束的光轴和入射光束的光轴几乎重合,从而完成整个逆反射过程。这个折射率的差别使得以玻璃珠技术生产的反光材料分为暴露型、透镜埋入型和密封胶囊型。
暴露型玻璃珠的最好例子,就是上面提到的仍在美国的乡村使用的古董级反光标志牌、反光布、反光片和道路标线涂料。它和后面两种类别的区别,在于它的玻璃珠上面没有保护膜而直接和空气接触。光线直接经过玻璃珠的折射聚焦后,其能量损失最少,光线受到的影响也最小,因此,其反光强度比较高。但是在特定的情况下,有些玻璃珠是没有金属反光层的,比如反光标线涂料,它的反光层就是白色的标线涂料。这样的反光层不能精确地把光线反射回玻璃珠,形成有效的逆反射,所以其反光亮度很低,一般是反光衣物和反光标志牌亮度单位的千分之一。如图19中的反光衣物与地面标线的对比效果。
反光材料的性能,除了与玻璃珠本身的性质有关以外,还取决于玻璃珠的有序排列、玻璃珠与基材的粘合度、耐侯性能和角度性能,而这些都是玻璃珠暴露型反光材料的不足之处。这种裸露型的反光材料,其反光亮度已经无法与其他更新的反光材料相比,在很多情况下也已经不能适应高速交通的安全要求,所以已经逐步退出了在交通标志牌上的应用。但在其他领域,比如反光服装和反光涂料上仍然在大量使用。
在暴露型玻璃珠的基础上,进一步研发了透镜埋入型的玻璃珠反光材料,它是将玻璃珠直接埋入在透明树脂里的。由于玻璃珠的大小并不是完全一致的,玻璃珠和背后的反光层的距离也不是一致的,在光线穿过玻璃珠时,并不能保证该玻璃珠的焦点就正好落在背后的反光层上,这时就不能反射光线再次通过玻璃珠回到光源。因此该类型的逆反射亮度并不是很高。
在上述两种逆反射技术之上,又有了密封胶囊型的玻璃珠反光材料。其反光层是直接涂在玻璃珠上的。该类型玻璃珠的折射率与前者不同,它的特点在于折射率可以控制它的焦点刚好落在它的外壁上,而外壁上正好有一个反光层,这样的结果是保证了所有从玻璃珠折射到外壁的光线都可以返回到玻璃珠。这个特殊的折射率有一个副产品,就是光线只能从空气层进入该玻璃珠时才能保证该折射率有效。所以这类产品的特征除了反光亮度比透镜埋入型产品有更高反光亮度以外还有一个特征:在玻璃珠前面有一个空气层。这个空气层解决了膜结构内和膜结构的温差问题,减少了露水凝结导致的视认难题。图21是两者在结构上的对比,图22是两者在显微镜下的对比。
|
|
值得关注的是,上述这些技术,都是反光材料发展前期的一些技术,其核心技术的生成与发展,主要是在20世纪40年代到70年代,此后,伴随着密封胶囊型反光膜上的多项技术专利在1985年到期,逆反射材料的新技术研发,开始转向新的反光材料--棱镜型反光材料。主要原因是,从数学角度看,玻璃珠型反光材料的反射效率,由于受到玻璃珠的球体形状的限制,有很多体积部分,是无法作为反射区的,并不是最理想的光反射控制途径,所以反光效率并不高,反光角度也还没有得到更好的控制,加之在生产过程中的能耗、废弃物排放、VOC的排放(可挥发性有机化合物的总称),都比之后问世的微棱镜反光材料高,因此,从进入21世纪后,在世界范围内,特别是在发达国家和地区,在交通标志用反光材料领域,棱镜结构的反光材料开始越来越获得了普遍的应用。
微棱镜逆反射技术
逆反射材料除了采用玻璃珠技术原理制作外,有另外一种微棱镜型技术,其原理是:光线由棱镜的三个面镜面反射之后朝光源方向返回。每一个单位的微棱镜相当于立方体的一个角,入射光线经过微棱镜的全反射,向光源方向反射。和玻璃珠技术的区别在于,微棱镜技术没有光线的折射,也没有金属反射层,所有的光线都从微棱镜的三个面反射出去,这些光线反射都发生在微棱镜和空气的界面中,因此在微棱镜结构中,其棱镜上面和下面都有一个空气层。
根据反射效率的大小,棱镜反射分为部分反射和全反射。全反射是一种特殊的反射现象,其发生必须满足两个条件:光线从光密介质进入到光疏介质,入射角大于或等于临界角。图22是光线从折射到全反射的变化,当n1> n2及入射角增大时,更多的光线被反射回去;当入射角增大到某一角度时(临界角),发生全反射。
根据临界角的定义,可以求出光从折射率为n1的光密介质进入折射率为n2的光疏介质时的临界角。设入射角为α0时,折射角为90°,如图23所示,由折射定律可得:
|
|
所以,由上式可见,光疏介质的折射率n2越小,光密介质的折射率n1越大,发生全反射的临界角越小,即越容易发生全反射。由上式计算出α0的正弦值后,查三角函数表得α0值,或从计算器上查得α0值。注意光密和光疏是相对两种界面发生全反射的物质而言的。一种物质可以是某一特定界面时的光疏物质而同时是另外一个界面的光密物质。当光从折射率为n的某种介质射入真空(空气)时,临界角计算公式为:
表1是对比空气而言的几种物质的临界角。
表1 几种常见物质对真空(空气)的临界角
物质(固体) | 临界角(°) | 物质(液体) | 临界角(°) |
金刚石 | 24.4 | 甘油 | 42.9 |
二硫化碳 | 38.1 | 酒精 | 47.3 |
玻璃 | 30-42 | 水 | 48.6 |
在非交通安全产品以外应用最广的全反射产品是光纤通信。光纤的结构由中心和外皮两种不同介质组成,当光线从中心传播时遇到光纤弯曲处,会发生全反射现象,这样就保证了光线不会泄漏到光纤外。
这种技术开始应用在交通安全产品上是从截角式微棱镜开始的。所谓截角式棱镜(英文:truncated cube),就是指整个微棱镜的基本结构和立方体的一个切角的结构是类似的。这个切角的切面和三个反射面的角度变化可以组合成几种不同角度性能的微棱镜结构。把这些结构的单元联结排列后形成完整的平面,在这个平面的上面加保护膜,然后在下面加背胶就制造出了在道路上广泛使用的截角棱镜型反光膜。图25是微棱镜的截面图。
由于微棱镜反光膜里的反射单元,是根据能进行光反射的棱镜型数学模型,由人工微复制出的,所以从理论上讲,微棱镜的结构,是能够根据光反射的功能需要,进行结构调整的,其中真正的难度,在于微复制的工艺和材料科学。也因为这些特点,微棱镜结构的反光膜,有多种结构形式。以下主要介绍三种结构类型。
第一种结构,是和普通微棱镜的数学模式一样的结构,它的切面为正三角形,三个反射面为三个相互垂直的直角等边三角形。在排列方式上是把六个切角连接成一个正六角形,整个平面排列方式是蜂窝状的结构。使用这种结构制作的反光膜,正面反射亮度非常高,而且没有方向性(方向性是指同一反光膜在同样的观测条件下,垂直放置和平行放置时的逆反射性能不一样),但在大的入射角,也就是照射光线不和切面垂直时,反光亮度会有很大的衰减。如图26所示。
第二种结构,棱镜三个反射面也是相互垂直的,但其切面不是正三角形而是等边三角形。其排列方式也是连接六个微棱镜单位成为一个六角形,但这个六角形并不是等边的六角形。根据这种结构做出的反光膜,正面亮度比正六角形排列的反光膜要低,但在大的入射角,也就是照射光线不和切面垂直时,反光亮度不会有很大的衰减,加上本身正面亮度就不高,所以虽然它在远距离的反光亮度一般,但在车灯近距离照射时(观测角加大),反光亮度比第一种结构的要高。还有,其方向性要比第一种结构要强。如图26所示。
第三种结构,是一种不同于前两种结构的特殊结构。其特殊之处在于它的基本单元不是一致的,而是由两种不同形状的切角排列组成,如图27所示。
该第三种结构,就是21世纪初形成的最新技术,叫全棱镜逆反射技术。
全棱镜逆反射技术形成的背景
无论是玻璃珠型还是和棱镜型的反光材料,其实都是通过光线作用在材料结构上的几何体实现的。也就是说,这种逆反射材料的结构,首先是以数学理论为基础的。它利用几何体对光的折射和反射,结合光波传送时的波长和特点,找到了尽量完美的光线传导方式,并通过材料科技加以实现,从而不断地提升了不同入射角度的光线的逆反射亮度。
这种利用数学几何模型,寻找光回复反射效率改善答案的努力,在21世纪初,达到了微棱镜逆反射技术的新的理论高峰,并通过和微复制技术和膜技术的结合,成功地完成了全棱镜逆反射材料的制作,
全棱镜逆反射反光膜的数学结构,从理论上说,可实现100%的逆反射效率,兼备了交通标志反光膜所应该具备的兼顾远距离发现能力和中近距离的认读能力。用这种理论指导完成的全棱镜逆反射材料,是完全根据交通标志的动态视认需求特点,再结合光学、人体工程学的技术,首先完成了数学结构的设计后,再通过微复制技术,制造出来的新一带逆反射材料。它既做到了在尽量远的距离上,保持优越的逆反射性能,使驾驶者尽早发现标志,又做到了不同的车辆连同驾驶者,在进入200米左右之后的标志内容视认距离后,也就是在观测角快速变大,车辆迅速接近交通标志时,逆反射系数的衰减缓慢,使标志的逆反射光度,在0.2到2.0度观测角之间始终保持了超过50%的逆反射效率,即在距离标志50到200米的范围内,尽量使标志处在便于识读的稳定亮度状态下.
图28是根据美国ASTM标准定义的不同级别的反光膜,在观测角变大时,所能保持的逆反射效率曲线,其中第I、III类是玻璃珠型的反光膜,对应GB/T 18833-2012的I、III类,X、IX类是两种截角型棱镜反光膜,对应GB/T 18833-2012的第IV类,逆反射效率最高的,是全棱镜型反光膜, 对应GB/T 18833-2012的第V,。
全棱镜反光膜的目标,是要使交通安全领域里使用的各种逆反射材料,都能最大限度的"利用"来自于主动光源的能量,实现最理想的逆反射效率,从而优化视认距离,提高视认效率,改善安全视认条件。
到目前为止,全棱镜反光膜实际产品的逆反射效率是58%,它的未来发展方向大致有两个。一个来源于材料工艺的提升以降低实际反射效率和理论的差异,这包括通过材料表面和机理的研究与提高,进一步减少光损耗,增强耐侯性,增强反光材料的韧性和贴服适应力等;另外一个是进一步加大和新材料的结合以适应不同的需求,其中一个已经成功的例子是和耐侯性荧光材料结合而产生的荧光反光膜,利用荧光材料转换不可见光为可见光的性能,革命性地提高了反光膜在黄昏和黎明时的反光亮度。
全棱镜反光材料实现全反射理论的过程
全棱镜是微棱镜结构中的一种特殊结构形式。在制造第一代和第二代微棱镜时,光学的折射率和临界角的知识已经完善,因此,从传统微棱镜过渡到全棱镜的并不是反射理论知识的更新,而是完全由一个新技术,即微复制技术和已有的微棱镜技术的结合产生的对微米级结构的切割和组合材料工艺技术。虽然微棱镜的所有表面都有全反射功能,但从全反射到逆反射还需要一个条件,就是光线必须连续在微棱镜单元上的三个面上各进行一次全反射。在微棱镜的截角式结构里并不是所有的光线照射到截角式微棱镜以后都可以完成三次全反射,达到逆反射效果;照射到微棱镜三个角落的光线只能完成两次全反射,而没有逆反射效果,图29说明了截角微棱镜的不反光部分。图29右侧显示了全棱镜的全部反光(图中绿色部分为有效反射面积)。
突破这个瓶颈的关键,就是把微棱镜中反光和不反光的部分分离、切割、最后再组合。在微棱镜的角落部分是不反光的,而在棱镜的中心角(顶角)位置附近是反光的,把顶角附近反光部分切割再重新组合以后的全棱镜,可以在理论上达到100%反光。图32是全棱镜从微棱镜转变的过程。
在显微镜下对比传统微棱镜和全棱镜的可以看出,微棱镜的边角部分和顶角部分有明显的亮度区别,也就是说,顶角部分反光而边角部分不反光。而全棱镜的顶角和边角部分没有亮度区别,全部都是反光的。在反光单元的底部的三个角的连接部分的不反光部分已经消失了。
这种全棱镜反光材料的问世,对道路交通标志的视认,有着非常大的意义。受到人的肉眼视力和道路条件的限制,道路交通标志的有效识读距离是有限的,一般在50到250米之内是比较现实的一个视认距离,因此,提高标志表面材料的逆反射光控制能力,使光在关键距离里分布到需要的方向上,以应对在各种角度条件下的主动光源的照射和驾驶员的观察,就能最大限度地提升光使用效率,改进标志亮度,从而优化标志视认,改善视距。
逆反射材料亮度的概念
由于逆反射技术,是把光源照射的光线,通过被照射物体表面的材料,再返回到光源处,其反射效能不仅与反射材料的表面结构有关,还与逆反射材料的亮度有关。因此,在了解逆反射技术的基本原理后,有必要建立关于逆反射亮度的概念。事实上,逆反射材料的亮度,是一个俗称,更多地是人们在描述对光的感受。
不同颜色的不同物体的反光能力是不同的。特别是采用不同技术制成的反光材料,对反射"亮度"具有显著的影响。人们为了用更科学的方法来表现这种差异,总结出了光度性能的逆反射系数。表2列出了不同逆反射体的逆反射系数。
表2 各类物品的逆反射系数比较
逆反射体种类 | 皮肤肤 | 白色织物 | 白色工程级 | 白色高强级 | 白色超强级 | 白色钻石级 |
逆反射系数(Cd/Lx/m2) | 0.1 | 0.2 | 70 | 250 | 500 | 800 |
从上面简单的数据列表里,能够发现,人体在身着白衣服的情况下,其反光亮度,只有白色钻石级反光材料的1/4000,也就是说,其被从光源附近的观察者辨识的机会,比白色反光材料所能提供的辨识几率,相去几百到几千倍,这也就是为什么,逆反射技术能够使人们更安全,因为它可以大幅度地提高机动车驾驶的安全视距。
从上面的简单数据举例中,很难全面理解逆反射材料的亮度,特别是对逆反射技术的亮度的理解,还是有很大的技术距离的。鉴于逆反射技术的亮度,主要是为了提高交通标志的视认性,因此,在技术评价上,相对逆反射材料的亮度概念,事实上是一个宏观概念,包含了两个很重要的微观技术指标:光度和色度。
逆反射的光度
根据交通行业标准JT/T690-2007《逆反射体光度性能测试方法》的规定,逆反射的光度性能可以用比率法、替代法、直接发光强度法和直接亮度法等四种方法来测量。因为在本书中着重讨论和交通安全相关的逆反射技术,所以只使用逆反射体的光度测试方法中的逆反射系数,英文是Coefficient of Retro-reflection, 单位是cd/lx/m²,Candelas per square meter per lux ,也简称为CPL。在JT/T 688-2007《逆反射术语》中,对逆反射系数的定义是"发光强度系数与逆反射体的表面积之比。"用数学公式表现为:
式中:RA是逆反射系数,单位为每堪德拉每勒克斯每平方米(cd/lx/m²);
A是试样表面面积,单位是平方米(m²);
I是发光强度系数,单位为坎德拉每勒克斯(cd/lx);
I是发光强度,单位为坎德拉(cd);
E┴是光照度,单位为勒克斯(lx)。
逆反射系数是用来描述光线照射到物体表面以后再反射回光源的量。这个系数简单来说就是反射光线对应照射光线的比率。该系数在不同的入射角(例如-4°,+30°,+50°)和不同的观测角(例如0.2°,0.5°)时分别对应车辆在相对标志牌的不同关键位置时逆反射性能,这些性能对应了驾驶员在不同位置和时间对标志牌的识认要求。图33是关于逆反射系数的基本光学单位介绍。
发光强度(Luminous intensity, Candlepower),是指从光源一个立体角(单位为sr)所放射出来的光通量,也就是光源或照明灯具所发出的光通量在空间选定方向上分布密度,单位为烛光(Candle or Candela, cd,堪德拉)。发光强度为1堪德拉的光源可放射出12.57lm(流明)的光通量。可以简单地把1堪德拉理解成一个蜡烛产生的光的强度。
照度的单位是勒克司(lux,Lm/m²,勒克斯),在距离一个发光强度为l堪德拉的光源1米处接受的照明强度,习惯称为烛光.米。亦即距离该光源1米处,1平方米面积接受1流明光通量时的照度。
亮度(luminance, Brightness)也称为辉度。当人眼目视某物所看到的物体,可以用两种方式表达其亮度:一种用于较高发光值者如光源或灯具,直接以其发光强度来表示;另一种则用于本身不发光只反射光线者如交通标志牌,以亮度表示。亮度即被照物每单位面积在某一方向上所发出或反射的发光强度,用以显示被照物的明暗差异,公制单位为堪德拉/平方米(Candela/m²,cd/m²)或尼特(nit)。
逆反射系数就是反光膜接受光线以后的反射亮度,单位是每堪德拉每勒克斯每平方米(cd/lx/m²),或者简称CPL。
一般意义上讲,逆反射系数越高,说明逆反射材料的逆反射性能越好,由此制作的安全设施越能在更远的地方越早被驾驶员看见。但如果从工程技术人员的角度评判逆反射材料的"亮度",实际上是一定要带上距离和角度值的。因为所有的逆反射材料,在不同的距离、入射角和观测角下,都有不同的逆反射系数。概括起来讲,影响逆反射系数的最关键因素是两个角度:车灯、设施和驾驶员的视线形成的观测角;车灯和设施形成的入射角。单纯地评价逆反射材料的亮与不亮,更多地是人们的一种感受和印象,很难作为科学概念进行理解。不过,伴随着国际交通界对视认问题研究的深入,近来也逐渐形成了一个共识,就是在一定条件下,逆反射性能较好的材料,即指可以兼顾远距离发现需求和近距离视认需求的反光材料。
(三)逆反射的色度
道路交通安全设施中所使用的材料涉及普通材料、逆反射材料、荧光材料等,颜色主要包括表面色(昼间色)和逆反射色(夜间色)。
表面色为各种材料、设施在白天使用时的颜色,即昼间色。目前国家标准中规定的安全色和视觉信号表面色均属于表面色。
逆反射色为具备逆反射特性的材料或设施在夜间使用时所显现的颜色,即夜间色。近几年随着逆反射技术及其应用的发展,人们逐渐意识到夜间使用的逆反射色的重要性,开始对其进行研究和规范。
测量表面色时,采用D65光源作为照明光源。D65光源的亮度近似于白天中午左右的太阳光,照明观测条件是45/0,观测到的是昼间色;测量逆反射色时,采用标准A光源作为照明光源。标准A光源亮度近似于汽车前照灯,照明观测条件是入射角0°、观测角0.2°,观测到的是夜间色。
D65和A光源分别代表了色温等于6504K的日光和辐射体在2856K发出的光,简单说就是白天中午时的阳光和夜间条件下车灯照射的光线。
为什么要同时规定两种状况下的颜色标准呢?因为我们人眼看到的颜色实际上是物体颜色和环境光线在人眼中综合的反映,同样物体在不同光线条件下的颜色是不一样的。而交通安全设施要传递的信息是固定的,不能因为颜色的差异而引起白天和夜晚的视认性能变化过大。例如高速公路上的警告标志,在白天时的视认环境良好可以及时预告而引导交通流安全通行,但在晚上可能因为颜色的差异使得视认性能大大下降而引发交通事故,所以交通标志上的颜色变化要有严格的规定。图34是GB18833-2012的两种反光膜颜色坐标。
|
|
在交通标志上使用反光膜,在夜晚,反光膜对光线的定向反射会影响反光膜在人眼里反映的颜色。如图35所示,禁止摩托车通行的标志牌和稍远处的公益标志牌在白天的颜色并没有很大差异。在夜晚,标志牌的颜色仍然是保持和白天基本一致的颜色,而公益标志牌的颜色已经变得很灰暗了。
●
失落的珍宝
蜻蜓眼式玻璃珠
︱李菲︱
蜻蜓眼式玻璃珠,一颗璀璨夺目的珍宝,出现于中国历史长河的某个坐标上,却又失落于时间的旋涡中。短暂而辉煌,是先秦艺术的结晶。
一、蜻蜓眼式玻璃珠的来源
蜻蜓眼式玻璃珠是指以眼睛纹样进行装饰的玻璃珠,表面形成一圈套一圈类似蜻蜓复眼的图案。西方学界称之为“眼珠”(Eye Beads),蜻蜓眼式玻璃珠一词源于日本学者的命名“トンボ玉”,形象贴切,被国内学者及收藏爱好者接纳并使用。其实眼睛纹样最早起源于埃及,冥神欧西里斯(Osiris)与大地女神伊西斯(Isis)的儿子荷路斯(Horus)的眼睛。荷路斯通常显现为鹰头人身,是法老的化身,天空和太阳的象征,胜利和勇气的源泉。古埃及人制作荷路斯的眼睛作为护符,来获得战胜邪恶的力量。眼睛纹样很快被传播并广泛流行于西亚、北非以及欧洲的广大地区。目前中国出土年代最早的钠钙玻璃珠是在新疆拜城和塔城发现的,大致在西周至春秋。由于在当地并未发现玻璃制造遗址,推测这批玻璃珠为外来输入的可能性极大。出土年代最早的蜻蜓眼式玻璃珠来自河南固始侯古堆一号墓,时代在春秋末期,同样是钠钙系玻璃珠。
荷路斯的眼睛
摘自《The Worldwide History of Beads》
这些早期玻璃珠显然都是舶来品。秦以前,在广袤的欧亚大草原上绵延着一条连接欧亚大陆的通道(Trans-Asiatic Highway),东起黑龙江、松花江流域,西抵多瑙河、伏尔加河流域。斯基泰人、萨尔马提亚人及其他游牧民族作为欧亚草原的中介,进行着密切的交流。塔城是从阿尔泰山脉东南行至准格尔的必经之地,发现钠钙系玻璃珠是完全合乎情理的。伊朗高原吉兰州出土的大量蜻蜓眼式玻璃珠,与中国春秋末战国初的标本很相似,珠子作为易携带可交换的物品在这条道路上贸易传播。多数学者认为蜻蜓眼式玻璃珠是在公元前一千纪中叶通过游牧民族由欧亚草原路经新疆传入我国的,源头指向西亚的伊朗高原。战国初期,中国本土虽然已掌握了蜻蜓眼式玻璃珠的制作工艺,但钠钙系蜻蜓眼式玻璃珠的贸易交流依旧绵延不绝,直至汉代以后。
钠钙系蜻蜓眼式玻璃珠
美国大都会博物馆藏
二、蜻蜓眼式玻璃珠的分类
中国出土的蜻蜓眼式玻璃珠,据博物馆藏品及出土文献统计有10 0 0件之多(不包含民间私人藏品)。时代上自西周,下迄两汉。蜻蜓眼式玻璃珠均为纯手工制作,带有相当的随意性和创造性,从现有的资料看,每一颗珠子不尽相同,都是独一无二的。蜻蜓眼式玻璃珠依据眼睛的图案可分为单眼珠(Simple Eye Bead)、层状眼珠(Stratified Eye Bead)、套圈眼珠(Multicircle Eye Bead)及组合型眼珠(Compound Eye Bead)。单眼珠分为整体眼珠和多个单眼珠。整体单眼珠即珠子整体制作成一个眼珠的形状,此型标本目前中国仅发现一例,这类眼珠看似更接近人眼,视觉上具有强烈的恶眼护符力量;多个单眼珠实际上只是多个“点”的排列组合,属于纹样简单的蜻蜓眼式玻璃珠。层状眼珠是以“瞳孔”为中心外围环绕层层“眼圈”,层状眼睛的“眼圈”少则一层,多则九层,也许更多。根据“眼圈”的层数分为双层眼睛(Double Layers)和多层眼睛(Mu ltiple Layers)。同时,根据“瞳孔”所处位置,又分为同心圆眼珠(Concentric Eye Bead)和离心圆眼珠(Eccentric Eye Bead)。离心圆眼珠是一种生动活泼的设计纹样,以不固定的圆心层层画圆,产生“斜视”的效果,以期冀能抵挡来自不同方向的恶势力,离心圆纹样仅流行于战国中晚期。在中国的考古发现中,多层眼珠出土标本最多,分布范围广泛,且造型意匠变化也最丰富,应该说多层眼珠引领了战国时期蜻蜓眼式玻璃珠的主流风潮。套圈眼珠,一个大圆圈中套若干小圆圈,小圆圈的数量似有定规,通常为3、4、5、6、7、9个,最多可见11个。小圆圈大小一致,排列是以一个为中心,其余环绕置于周围。收藏爱好者根据小圆圈的数量亲切地称其为“三星纹”“七星纹”。最早出土的标本是湖南长沙烈士公园M3出土的1件,为七星纹眼珠,年代在春秋末或春秋战国之交。目前的出土报告显示,出土过套圈眼珠的墓葬通常等级较高,且发掘数量较少,3—4颗已算多数,可见套圈眼珠在当时亦是价值不菲的珍品,身份高贵的象征。组合型眼珠是外来文化与中国本土传统纹样的完美结合,技艺高超的工匠在小小的玻璃珠上大做文章,以重复对称的意匠来排列组合不同纹样的眼睛,再辅以联珠点纹(俗称珍珠地)、三角形纹、菱形几何纹、十字星纹、S蛇形纹、平行线纹、蝌蚪纹、柿蒂纹等装饰纹样,构成图案丰满、华丽炫目的组合型眼珠。组合型眼珠既是中国本土所特有的蜻蜓眼式玻璃珠纹样,也是中国古代造型工艺的完美体现。
蜻蜓眼珠分类图
如果根据眼睛的镶嵌技法来划分的话,蜻蜓眼式玻璃珠又可以分为平眼(Flushed Eye Bead)、凸眼珠(Raised Eye Bead)和角锥眼珠(Horned Eye Bead)。前两者顾名思义,用手触摸可感知凸眼珠的眼睛高于母体。角锥眼珠工艺繁复且不易保存,是稀有的类型,多层次眼睛叠加形成三角锥突出于母体,产生动物“兽角”般的效果,也有些像儿时吃过的宝塔糖。几枚登记在册的角锥眼珠装饰手法多样,图案设计复杂,制作精细得令人惊叹!湖北江陵九店M703出土品,美国康宁玻璃博物馆藏品及Mr. Albert Summerfield的个人藏品,均可视为角锥眼珠的顶级标本,中国独特的角锥眼装饰风格为世界珠饰的多样性做出了贡献。
战国角锥眼玻璃珠
Mr. Albert Summerfield私人藏
这里还要提及,在类型多样的蜻蜓眼式玻璃珠中,有两种形制的眼珠属于中国本土所特有:①陶胎眼珠,以陶土为胎体,表面施以有眼睛等装饰图案的玻璃釉,是玻璃与陶土的结合体;②方糖型眼珠,通体呈正立方体,圆角,母体白色或紫红色,嵌入不同颜色眼睛图案。河南郑州二里岗、陕西咸阳塔儿坡均有方糖型蜻蜓眼式玻璃珠出土。从单纯的境外贸易输入到日渐步入本土化,从春秋末年到战国中期,蜻蜓眼式玻璃珠成为权贵们所追求的珍品,引领一时风尚,信仰与艺术得到了完美的结合,推动中国玻璃制造技术登上了第一个高峰。
方糖型眼珠
三、蜻蜓眼式玻璃珠的用途
中国的蜻蜓眼式玻璃珠均出土于墓葬中,可根据出土位置不同判断其用途。作为辟邪祈福的“护符”,蜻蜓眼式玻璃珠以颈饰、耳饰、腕饰、腰饰、手握的形式被墓主人贴身使用。新疆尼雅95一号墓地东汉后期M3出土的1件蜻蜓眼式玻璃珠,穿孔内穿皮带,带长130厘米,贴身斜背,可见佩带方式多种多样。湖南长沙烈士公园3号木敦墓中,蜻蜓眼式玻璃珠被放置在内棺与外棺两档板的空隙中。人们认为蜻蜓眼式玻璃珠拥有神秘力量,可护佑墓主人永生,这与最初传入中原的“恶眼”可抵抗邪恶的西方文化不谋而合。
随着中国本土玻璃制造业的兴盛发展,蜻蜓眼式玻璃珠被制成嵌件镶嵌于器物上:玉璧、铜镜、带钩、簪帽、漆盒、剑饰甚至在琉璃杯上也贴满了蜻蜓眼图案。洛阳金村东周墓葬群出土,现存于美国哈佛大学赛克勒博物馆的嵌玉嵌蜻蜓眼式玻璃铜镜精美绝伦,铜镜背面的中心是一颗大型“七星纹”眼珠,外套光面玉璧,玉璧外是由两圈眼珠图案装饰的玻璃璧,其中“七星纹”眼珠图案两圈各6枚,共12枚。“离心圆”眼珠图案外圈12枚,内圈6枚,共18枚。每个圆心偏向左侧,视觉上与最外围的旋涡纹玉环搭配,形成了活泼的顺时针旋转效果。此件铜镜实为中国古代玻璃镶嵌品的翘楚,堪称艺术瑰宝。
(战国)嵌玉嵌蜻蜓眼式玻璃铜镜
直径12厘米
河南洛阳金村出土
美国哈佛大学博物馆藏
四、蜻蜓眼式玻璃珠的兴衰
战国时期,中国本土的玻璃制造技术已经达到了高超水平,那么我们不禁想要探寻如此光彩夺目、迤逦多姿的珍宝是在哪里生产出来的呢?周王室东迁后,社会进入了孔子所说的“礼崩乐坏”的秩序中,割据国不再把宗周礼仪视为圭臬,繁缛的礼仪制度受到了地方霸主们独特风格和不同信仰的强烈冲击,形成多元化的文化氛围。在组佩的形制上,从经典繁重的项饰全身佩转化为轻便精美的腰间半身佩。除了风格上的新颖变化,水晶、玻璃等新材质的加入也给战国组佩带来了绚然飒利之风。位于南方的楚国在崛起前被中原列国视为蛮夷,不属于鼎礼的文明之邦。
《左传·宣公三年》记录:“楚子伐陆浑之戎,逐至于雒,观兵于周疆。定王使王孙满劳楚子,楚子问鼎之大小轻重焉。”楚文化具有强烈的渗透能力,问鼎中原后,楚人把鲜活的新生命灌注到温和陈旧的宗周正统文化中。楚人骁勇善战,巫风炽盛,产生出引以为傲的文化和造型艺术,他们崇尚原始神秘力量,神游太虚,在仙雨巫风中追寻着浪漫情愫。当西方的钠钙系蜻蜓眼式玻璃珠,经欧亚大通道进入楚人的视野后,楚人以惊叹而敬畏的心情接纳了外来的眼睛崇拜文化。从目前出土分析报告已知:荆楚地区的湖北随县曾侯乙墓、其妻子擂鼓墩二号墓、湖南长沙楚墓M1955均有钠钙系蜻蜓眼玻璃珠出土;河南固始夫差夫人墓出土1枚钠钙系蜻蜓眼式玻璃珠,为夫差攻占楚国番地时的战利品。这些舶来玻璃珠出土于等级较高的墓葬中,可见当时价值昂贵,且受到权贵青睐,这正是中国本土玻璃烧造业得以新兴发展的契机。
湖北江陵杨场出土玻璃珠佩饰穿系示意图
摘自《楚人的纺织与服饰》
春秋中后期,位于长江流域下游的荆楚地区成熟掌握了矿冶、髹漆和丝织技术,先进的生产力使楚国成为雄踞一方的霸主,“海纳百川,有容乃大”的精神境界,使西方传入的蜻蜓眼式玻璃珠在楚地得以更深入的发展。“随侯之珠”一词,在我国古代文献中反复出现,李斯《谏逐客书》中:“今陛下致昆山之玉,有随和之宝……”《墨子·耕柱篇》:“和氏之璧,隋侯之珠,三棘六异,此诸侯之所谓良宝也。”“随侯”或写作“隋侯”,青铜器上也见“曾侯”,是西周初年分封在汉水以北及以东地区的姬姓诸侯之一,在今湖北随州,曾侯乙墓所在地。“曾即随,随即曾”,学者认为可能一国两名,曾侯乙墓出土了173颗蜻蜓眼式玻璃珠,数量远远多于同时期其他单一墓葬,符合墓主人随侯的身份。其中既有西亚传入的钠钙系蜻蜓眼式玻璃珠,也有中国本土烧造的铅钡系蜻蜓眼式玻璃珠。
《论衡·率性篇》提及“隋侯以药作珠,精耀如真”,明确指出“随侯之珠”是人工合成品,因此越来越多的学者认可蜻蜓眼式玻璃珠即是“随侯之珠”的说法。“隋侯之珠”的主人曾侯乙富甲一方,当从欧亚草原传入的蜻蜓眼式玻璃珠映入眼帘后,不免心往神迷,西亚神秘的眼睛文化禀赋了精神实质,与楚国崇神尚巫思想得到了契合。也许曾侯乙从此走上了蜻蜓眼式玻璃珠的收藏之路,且一发不可收拾,甚至把具有玻璃珠制作工艺的西亚匠人引入随国的地步。建立烧造作坊,技术融合,反复研制,终于生产出了熠熠生辉的传世珍宝“随侯之珠”。
公元前687年至公元前679年间,随国为楚国所灭,工匠散落,技艺失传,这是否是战国蜻蜓眼玻璃珠的制作戛然而止的原因,我们不得而知。东汉以后的墓葬,虽然蜻蜓眼式玻璃珠仍有零星发现,但学者指出应视为历史的孑遗。自战国以降,秦人以“绶”代“佩”,用最为简洁轻便的直白形式来标志个人身份。这既是秦人四处征战的需要,也是宗周礼仪逐渐消亡的表现,组佩不再具有强烈的宗教信仰和礼仪规范用途,而是以亲切温和的风貌装饰于日常生活当中。繁缛的珠玉组合被唾弃,加之玻璃材质脆弱不适宜秦人的行军耕作,作为炫富装饰之用的蜻蜓眼式玻璃珠从此被迫退出了历史舞台。
十多年前,笔者曾就此问题以书信形式请教于中国古代玻璃收藏大家关善明先生,关先生认为:“蜻蜓眼珠源于西方,眼珠代表神人眼睛,最早传入之时,相信具有宗教迷信意义,至战国时期,这种意义渐失,蜻蜓眼珠变成纯装饰物品。由于装饰时尚的改变,加上汉代以后琉璃价格渐降,黄金首饰代为而之,蜻蜓眼珠制造方法自此失传。”关先生为蜻蜓眼式玻璃珠在秦统一中国以后连同制作工艺一起销声匿迹做出了另一合理推测,然而盖棺定论的证据仍有待发掘。
历史是一部充满谜团的书。客观规律使我们能够对普遍的历史现象了然于胸,但也有一些特殊现象让人百思不得其解。汉武帝时期开疆辟土,帝国道路通达四野,张骞开凿了通往西域的“丝绸之路”,南方直达古印度的贸易道路在海上通行,人类的交流从未停止过脚步,文明被传播繁衍。蜻蜓眼式玻璃珠是先秦艺术文明的晨星,它的陨落并不是中国古代玻璃制造业的终结,也许仅仅是新篇章的开启。
战国玻璃珠
江陵马山2号墓出土
作者为自由撰稿人
(编辑:张楠)
︱全文刊载于北京画院《大匠之门》⑭︱
图文版权所有,如需转载,务必注明出处!